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GREY SYSTEM THEORY APPLIED 
TO FIRST PRICE AUCTIONS SYSTEMS 

 

Stanisław Barczak 
University of Economics in Katowice 
Department of Applied Mathematics 

 

1. Introduction 
 
Auction is a market institution with an explicit set of rules 

determining resource allocation and price on the basis of bid from the 
market participants.

1

First question is why the auction markets are so widespread in the 
whole world? The answer could be very simply but not necessary 
correct. Thus, we can say that all auctions have a well-defined rules 
and all the participants are anonymous. Thus, from the point of view 
of the auction markets are highly transparent.  Second problem is what 
are the best bidding strategies at a particular auction system ? In other 
words, we know that bids made at auction are mutually competitive. 
Thus enabling the selection of the best strategy to win the auction 
depends on a set of information available to the participant in the 
auction and its awareness of the facility issued a preliminary 
valuation.  Let's see how it was in the long past. In 193 A.D. after the 
death of the Emperor Pertinax, Pretorians decided to sell by auction 
the entire Roman Empire. The winning price was 25,000 sesterces for 

�

1
McAfee, R. P., & McMillan, J., “Auctions and Bidding,” Journal of Economic 

Literature, vol. 25 no. 2, 1987, pp. 699-738. 
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a man to Guard. The winner was Didius Julianus. As it turns out, this 
is one of the earliest and most extreme cases, to win the auction at 
heavily inflated offer. Today it is a so-called ‘winner course’. Today, 
through the auction system are sold any goods such as tobacco, master 
pieces, fish, fresh flowers, collections, natural resources, services, etc. 

From an analytical point of view, the question arises of how to 
modeling auction markets - the formal markets ? This problem applies 
to both sellers and buyers. Sellers count on maximum profit and the 
buyer want the lowest price. There is therefore an obvious conflict of 
interest of both the actors of the market - the seller and buyer. From a 
theoretical point of view as well as some practical applications in the 
form of strategies for players were very well described by the 
application of The Game Theory. Game theory points to the use of 
specific strategies reported by participants of tenders in the light of 
balance. In the case of rational behavior of players such equilibrium is 
reached. It must be remembered that the player does not always 
proceed rationally. Often, therefore, comes to the deviations from such 
behavior which usually means losing the sense to pay a higher price 
than that which would ensure victory in the bidding – ‘winner course’. 
The article is the proposed econometric method of estimation of future 
prices/offers received on the basis of previous bids at the auction. The 
proposed method requires a basic knowledge of the principles of rules 
of auction markets.  

From the standpoint of the buyer, the basic problem in each lot is 
the forecast of future bid, which may decide the winner. From the 
standpoint of the theory of econometric forecasts of the number of 
execution - submitted bids is very small for the auction for one object. 
Time series of offers is very short. Then there is not the possibility of 
applying classical methods of time series analysis. In the article 
proposes use of the gray model GM(1,1) for forecasting the future 
offers. 

 

2. Auctions and auctions formats 
 
Consider the basic auction systems. Auction markets can be 

divided into the two following groups: first common auctions and 
second equivalent auctions. In terms of Game Theory we are talking 
about open systems and sealed-bid systems (Fig.1). 
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Figure 1. Open and Sealed-Bid Auction Formats 

Source: Prepared on the basis: V. Krishna, Auction Theory, Academic Press 2002, p. 5 

 

Figure 1 shows how to derive four basic auction formats. Thus 
we have two open auction formats: Dutch and English, and two 
formats sealed-bid auctions: first-price and second-price.  

Let consider the first one – open format. Open auctions require 
that their members were gathered in one place physically or through 
the web server. Each bidder can observe the bids submitted by other 
participants and decide to keep the amount of its own bid. Should be 
noted that the English auction format is the oldest auction system. One 
of the variants of English auctions is that the auctioneer who begins by 
calling out a low price and raises it, as long as there are at least two 
interested bidders. We have to remember that price increment is small. 
The auction stops when there is only one interested bidder. This 
bidder wins the object and pays the auctioneer an amount equal to the 
price which he declares. From the perspective of modeling assumes 
that bids are increasing continuously. Second one open auction format 
is Dutch auction. This auction format is the open descending price 
counterpart of the English auction. In practice, the Dutch auction is 
not widely used but from the perspective of the auction system is an 
interesting subject of study. The price is gradually lowered until some 
participant indicates her interest. The object is sold to this participant 
at the given price - appropriately low price. Now, consider the second 
auction format – sealed-bid auctions. The sealed-bid first-price 
auction is that participants bid from lowest to highest price. Winning 
the maximum bid. The winner is obliged to pay a price equal to the 
amount reported by its bid plus transaction costs. Recent primary 
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auction system is the second price auction. The winner submitting the 
highest bid wins the object but pays not what he bids but the second 
highest bid.  

Should be noted that in a closed bid auction format shall be 
submitted in envelopes, and there is no possibility of tracing the 
course of the auction. Only open systems in the English format allow 
observation of bids submitted by other participants. From the 
standpoint of gray systems are the only auction formats that allow you 
to track the history of deals made - that is, gathering relevant data.  

The paper proposed a method of forecasting prices will only open 
auction formats with particular reference to the English first-price 
auction. The choice of auction format is dependent on the possibility 
of direct observation reported bids. This fact is the basis for predicting 
the amount of bids during the auction. 

 

3. Grey Systems – the basic idea. 

 

The “Grey System Theory” was first proposed by Deng Julong 
in 1982. Gray systems theory for a long time was not known. The first 
lecture was published only in 1989 and its author was Deng Julong. 
The first book released in Europe appeared in 2005. Its authors are 
Sifeng and Lin. In a general sense of Gray System Theory is 
applicable wherever the information about the process is very limited. 
However, the mechanisms governing the processes are partially 
known. The name was created on the basis of the theory of color 
names. For example, “black” is used to represent unknown 
information and “white” is the color used for complete information. 
Those partially know and partially unknown information is called the 
“Grey System Theory”. The analysis conducted on the theory of gray 
system has applications wherever the researcher has a mix of familiar 
and unfamiliar information. Firstly, in terms of theory and 
econometric time series should be stressed that its application requires 
the most significant set of information - usually long time series. 
Often knowledge of the distribution from which the observations 
come. Secondly, compliance with many theoretical assumptions the 
model is specified. An alternative theory to the classical theory of time 
series has become a gray system theory. Its main advantage is the 
simplification of modeling of processes in discrete time. This 
simplification is necessary to minimize the collection of information 
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and minimizing the assumptions about the model itself. This approach 
is sufficient to describe the process and the construction of accurate 
forecasts. Grey Systems Theory is in some sense alternative to the 
theory of time series and the theory of Fuzzy Logic, which also was 
recognized as the classical theory. Differences in approach to the 
classical approach of modeling and the theory of gray system are 
presented in Table 1. 

 

Econometric model 
Minimum number 

of observations 
Type of 
sample 

Sample 
length 

Level of 
mathematical 
sophistication 

Simple exponential 
function 

5 - 10 Interval Short Basic 

Regression Analysis 10 - 20 Trend Short Middle 

Casual Regression 10 Any type Long Advanced 

ARMA/ARIMA 
process 

50 Interval Long Advanced 

Neural Network Large number 
Interval or 

other 
Short Advanced 

Grey Systems 4 Interval Long Basic 

Table 1. Compare the main characteristics of the traditional econometric modeling, 
and modeling on the basis of gray systems. 
Source: Prepared on the basis: Lim D., Anthony P., Chong Mun H., Kah Wai N., 
Assessing the Accuracy of Grey System Theory against Artificial Neural Network in 
Predicting Online Auction Closing Price, Proceedings of the International 
MultiConference of Engineers and Computer Scientists 2008 Vol I IMECS 2008, 
19-21 March, 2008, Hong Kong. 

 

The idea of modeling on the basis of Gray System Theory can 
be summarized as follows

2
:

- qualitative analysis process should be the basis for further 
modeling, 

- qualitative analysis provides the basis for the specification of 

�

2
Liu S.,Lin Y. Grey information. Theory and practical informations., Sprnger-

Verlag, 2006, page:193-194 
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the quantitative model, 

- explanations of the factors, the relationship between these 
factors, and relationships between agents and the system are the 
main target of research, 

- it must be remembered that a particular factor can dynamically 
change the status, 

- any relationship between factors and between factors and the 
system is relative, 

- modeling process must be continuously reviewed, 

- types of data used for modeling are as follows: data of scientific 
experiments, empirical data, decision-making data, 

- the fundamental data for grey modeling are sequence of 
generations, 

- improving the quality of the gray models can take place through 
various methods of generating gray numbers, reorganization or 
modification of the data series, the choice of data and model 
specification, 

- the quality of the gray model is examined through an assessment 
of its fit to reality. 

 

4. Algorithm of GM(1,1) model. 
 
GM(1,1)'s name mean successive first-order Grey Model with 

one variable. Model  
GM(1,1) is often treated as a local predictor This model has wide 

application in predicting the short time series data. Simple algorithm 
for estimating grey model parameters are as follows: 

Step 1. Empirical data raw vector. 
Empirical time series is given as: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]nyyyy 0000 ,,2,1 �= for  4≥n [1] 

 
where: 

( )0 - the superscription represents the original/empirical data 

series. 
Important assumption is that in a number of empirical data in models 
of gray must be positive. Negative values are prohibited. But it is 
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possible that negative values appear in the data sequence. Therefore 
absolute value of the maximum negative data is added to shift all data 
to be positive. Main objective is to determine the future value of  

( )( )pny +0 where p determines forecast horizon, ( )1≥p .

Step 2. Transformation of empirical data: pre-processing. 
Empirical data transformation involves the application of the 

algorithm AGO
3
. AGO’s advantage of the algorithm is to eliminate 

the accidental observation. This algorithm can be written as follows
4
:

( )( ) ( ) ( )( )�
=

==⋅=
k

m

mkmyyAGOky
1

000 ,...,3,2,1 [2] 

 
( )( ) ( )( ) ( )( ) ( )( )[ ]nyyyky 1111 ,,2,1 �= [3] 

 
Step 3. Whitening equation (WE) 

( )1y process is modeled by the equation of the WE, which is first-

order differential equation.  

 
( )

( )
uy

dt

dy
=⋅+ 1

1

α [4] 

where:  
α - development coefficient, 

u - grey input. 

Next, define a mean operation ( )( )kz 1 as follows: 

 
( )( ) ( )( ) ( ) ( )( ) [ ]1,011 111 ∈−−+= ααα kykykz [5] 

 
Since, sampling time is: 
 

( )
( )( ) ( )( ) ( )( )kykyky

dt

dy AGO 011
1

1 =−−= [6]  

 

3
AGO -  Accumulated Generating Operations 

4
Dounis A.I.,Tiropanis P., Tseles D.,Nikolaou G., Syrcos G.P., A Comparison of 

Grey Model and Fuzzy Predictive Model for Time Series, International Journal of 

Computational Intelligence 2;3 2006, page:177-178 
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Final form GDE
5

of the model is as follows: 
 

( ) ( ) ( ) ( ) ukzky =+ 10 α [6] 

 
In order to estimate the parameters of the equation method is used 

Least Squared Error Method. We therefore: 
 

Θ⋅= BY [7] 
where: 

( )( )
( )( )

( )( )�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

ny

y

y

Y

0

0

0

3

2

�

;

( )( )
( )( )

( )( ) �
�
�
�
�

�

�

�
�
�
�
�

�

�

−

−

−

=

1

13

12

1

1

1

nz

z

z

B
��

; �
�

�
�
�

�
=Θ

u

a

Hence the formula for vector parameters is given as: 
 

( ) NTT yBBB
1−

=Θ [8] 

 
How easy it is to see the solution of equation WE is the 

exponential function with the initial condition as: 
 

( )( ) ( )( )10 01 yy = [9] 

 
Therefore, the solution can be represented as: 

 

( ) ( )( ) ( ) 41 10)1(* ≥+⋅�
	



�
�


−=+ −+− n
u

e
u

ypny pn

αα

α [10] 

where: 

pn + - forecasting p step size, 

pnk +=+1 - time instant of the prediction. 

 
Step 4. IAGO

6

The IAGO on the sequence of ( )( )ky 1 is as follow: 

 ( ) ( ) ( )( ) ( ) ( )αα

α
ee

u
ypny

pn −⋅⋅�
	



�
�


−=+ −+− 11* 100 [11] 

�

5
GDE – Grey Differential Equation 

6
IAGO – the inverse of AGO 
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The advantage of grey model is that GM model does not require a 
large number of observations, since there are only one regressor. 
 

5. Application of the model GM (1,1) on the example of 
English first price auction 

 
Suppose the English format of the first-price auction. Suppose 

further that we know closing price for the five lots of auction item. 
Time / date of closing auction does not matter. The main objective is 
to estimate the level of the closing bid price for the type of object. 
Such an approach is the historical approach. This allows the choice of 
strategy on the level of bidding for an item. This approach to 
modeling the price can be described as “horizontal”.  

So, vector from the “hammer price” [in Euro]  is given as: 
Step 1. 

( ) [ ]99;93;89;83;79;690 =y

6=n

Step 2. AGO transformation 
 

( ) [ ]512;413;320;231;148;691 =y

Step 3. Least Square Estimation of parameters 
 

�
�

�
�
�

�−
=�

�

�
�
�

�
=�

�

�
�
�

�
7523,72

0565.0

u

a

ρ

α

Determine the model, we have: 
 

( )
( ) 7523,720565,0 1

1

=− y
dt

dy  

Solve the model for the simulation value of ( )1y is: 

 
( ) [ ]8646,511;0118,413;5891,319;2983,231;8574,147;69ˆ 1 =y
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Step 4. 

Restore the ( )1ŷ -value to find the simulation value of ( )0y . We 

have: 
( ) [ ]8528,98;4227,93;2908,88;4409,83;8574,78;69ˆ 0 =y

Step 5. 
Verification 

 

( )0y ( )0ŷ ( ) ( )00 ŷy −=ε
( ) ( )

( )0

00 ˆ

y

yy −

69 69 -0 0

79 78,8574 -0,1426 0,0018 

83 83,4409 -04409 0.0053 

89 88,2908 -0,7092 0,0080 

93 93,4227 -0,4227 0,0045 

99 98,8528 -0,1472 0,0015 

Table 2. Summary of results 
Source: Own work 

 
MAPE error is: 

[%]4223,0=MAPE  

Quality of the model is determined by its adjustment to the empirical 
data (Fig.1). 
 

1 2 3 4 5
75

80

85

90

95

100

GM(1,1) model

Lot

P
ri

c
e

[E
u

ro
]

Empirical data

Theoretical data

Figure 1. Empirical vs theoretical values. 
Source: Own work 
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2R coefficient is equal to 99,64% for this model and F-statistics 
is equal to 821,2172.  

This means that high fit model to empirical data. The high value 
of statistic F is the statistical significance of the estimated model 
parameters. Hence, it follows that the specification of the model is 
correct and its adaptation to the reality it is sufficient for the needs of 
future bids submitted by bidders. As you can see there are areas of a 
revaluation, which may mean winning the auction due to the amount 
of the reported bid. From the viewpoint of stochastic nature of the 
model, it is difficult to say to the autocorrelation of the random 
component, given the low number of observations. The residual of 
model presents Fig 2. 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Residual Case Order Plot

R
e
si

d
u
a
ls

Case Number

 
Figure 2. Residuals. 

Source: Own work 
 

In short gray models of systems which allow the performance of 
the drawings. These models do not determine winner prices of action. 
Winning depends on the bidding process and the budget available to 
the participant. Each participant in the auction must be aware of their 
own budgetary constraints and in accordance with the auction to take 
the game - to act rationally. 

 

6. Conclusion. 

 
In conclusion, the modeling of market prices for the auction to be 

extremely difficult due to the low number of observed prices and the 
tightness of the market. Application of classical methods of 
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econometrics and artificial intelligence methods may lead to a 
breakthrough in the description of the extremely popular markets. 

In future studies will provide a review of models of gray systems 
based on real auction data. Auction models are gray systems enriched 
with tools of artificial intelligence and neural networks. 
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The distributions function of a chord in a

non-convex polygon

D. Barilla*, A. Duma**, A. Puglisi*
Department S.E.A.

*University of Messina
**University of Hagen
e-mail: puglisia@unime.it

1 Introduction

In the last three years some results were obtained on the probability, that a
line of the lattice RD of Buffon composed of parallel lines from a distance D

each other intersects a segment of length greater than or equal to s in a convex
poligon P , that is small compared to RD, therefore the diameter diam(P ) of
P is less than D. This poligon P is a rectangle by M. Pettineo, an equilateral
traingle by M. Stoka and A. Duma, a triangle by S. Rizzo and A. Duma, a
regular hexagon by V. Conserva and A. Duma, a rectangle trapezium by S.
Rizzo and A. Duma and an isosceles trapezium by L. Sorrenti.

A fundamental problem in the papers of Rizzo and Duma and in the paper
of Sorrenti is the large number of the cases that must be considered, because
between different sides and diagonals of P there are a lot of different situations.
The same problem is when we consider a non-convex polygon as in the follow
figure:

B
1

l
1

fig.1 - A non convex polygon

1
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In order to compute the announced probability we must to distinguish a
large number of different possible relations between the lengthes

B1, B2, l1, l2, B1 − l1, B2 − l2,

√

B2
1 + l22,

√

B2
2 + l21,

√

l21 + l22,

√

B2
1 − 2B1l1 + l21 + l22,

√

B2
2 − 2B2l2 + l22 + l21,

B2

B2 − l2

√

B2
2 − 2B2l2 + l22 + l21,

B1

B1 − l1

√

B2
1 − 2B1l1 + l21 + l22 and β.

β is the smallest segment between the following sides B1 and B2, that contain
the angle V . This is the reason why we try to find only the particular case

B1 = B2 =: A, l1 = l2 =: a,

therefore the convex polygon L, that have the form presented in the figure 2 or
the form that we can see in the figure 3:

Fig. 2 Fig. 3

We denote that the computation of the probability p(s) that the polygon
L intersects a segment of length greater than or equal to s ≤ diam(L) on a line
of RD is the most easy in the cases of the figures 2 and 3 that in the case of the
figure 1, because the polygons in the figures 2 and 3 have a symmetry compared
to the line determinate of V and W.

2 General considerations

The dimensions of L are

• for the figure 2 the follow: a, a
√
2 , 2

√
2 a, A− a,

√
A2 − 2Aa+ 2a2,

A and
A

A− a

√

A2 − 2Aa+ 2a2 = diam(L),
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• for the figure 3 the follow: a, a
√
2 , A− a,

√
A2 − 2Aa+ 2a2, A ,

A

a

√

A2 − 2Aa+ 2a2,
√

A2 + a2,
√
2 A = diam(L).

For each pair (A, a) with A > a we always have

max(a,A− a) <
√

A2 − 2Aa+ 2a2 < A <
√

A2 + a2.

Moreover, for A ≥ 2a we have

max(2
√
2 a,

√

A2 + a2) <
A

A− a

√

A2 − 2Aa+ 2a2 = diam(L),

and for A < 2a we have

A < min(
A

a

√

A2 − 2Aa+ 2a2,
√

A2 + a2) ≤

max(
A

a

√

A2 − 2Aa+ 2a2,
√

A2 + a2) <
√
2 A = diam(L).

The other relations between the dimensions of L depend on quotient
A

a
. The

equivalences

2
√
2 a ≤ A− a ⇐⇒

(

2
√
2 + 1

)

a ≤ A,

2
√
2 a ≤

√

A2 − 2Aa+ 2a2 ⇐⇒
(√

7 + 1
)

a ≤ A,

2
√
2 a ≤

√

A2 + a2 ⇐⇒
√
7a ≤ A,

√
2 a ≤ A− a ⇐⇒

(√
2 + 1

)

a ≤ A,

√

A2 + a2 ≤ A

a

√

A2 − 2Aa+ 2a2 ⇐⇒
√
5 + 1

2
a ≤ A,

√
2 a ≤ A

a

√

A2 − 2Aa+ 2a2 ⇐⇒ 0 ≤
(

A

a

)4

−2

(

A

a

)3

+2

(

A

a

)2

−2 ⇐⇒ λ0a ≤ A,

where λ0 ≈ 1, 338 is the only solution greater than 1 of the equation

λ4 − 2λ3 + 2λ2 − 2 = 0,

give us therefore the values for the quotient
A

a
:

λ0,

√
5 + 1

2
,
√
2 + 1,

√
7,
√
7 + 1 and 2

√
2 + 1.

.

Moreover we must consider also the values 1,
√
2, 2, and 2

√
2.
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In this way we obtain ten subintervals

]1, λ0] ,
[

λ0,
√
2
]

,

[

√
2,

√
5 + 1

2

]

,

[√
5 + 1

2
, 2

]

,

[

2,
√
2 + 1

]

,
[√

2 + 1,
√
7
]

,
[√

7, 2
√
2
]

,

[

2
√
2,
√
7 + 1

]

,
[√

7 + 1, 2
√
2 + 1

]

and
[

2
√
2 + 1,+∞

[

of ]1,+∞[. The form of clains of inequalities between the dimensions of L depend

on the belonging to the quotient
A

a
to any of these ten subintervals.

I if
A

a
≥ 2

√
2 + 1, therefore we have

0 < a < a
√
2 < 2

√
2a ≤ A− a <

√

A2 − 2Aa+ 2a2 <

A <
√

A2 + a2 <
A

A− a

√

A2 − 2Aa+ 2a2,

II if
A

a
∈
[√

7 + 1, 2
√
2 + 1

]

, therefore we have

0 <
√
2a < A− a ≤ 2

√
2a ≤

√

A2 − 2Aa+ 2a2 <

A <
√

A2 + a2 <
A

A− a

√

A2 − 2Aa+ 2a2,

III if
A

a
∈
[

2
√
2,
√
7 + 1

]

, therefore we have

0 < a <
√
2a < A− a <

√

A2 − 2Aa+ 2a2 ≤

2
√
2a ≤ A <

√

A2 + a2 <
A

A− a

√

A2 − 2Aa+ 2a2,

IV if
A

a
∈
[√

7, 2
√
2
]

, therefore we have

0 < a <
√
2a < A− a <

√

A2 − 2Aa+ 2a2 <

A ≤ 2
√
2a ≤

√

A2 + a2 <
A

A− a

√

A2 − 2Aa+ 2a2,

V if
A

a
∈
[√

2 + 1,
√
7
]

, therefore we have

0 < a <
√
2a ≤ A− a <

√

A2 − 2Aa+ 2a2 <

A <
√

A2 + a2 ≤ 2
√
2a <

A

A− a

√

A2 − 2Aa+ 2a2,
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VI if
A

a
∈
[

2,
√
2 + 1

]

, therefore we have

0 < a ≤ A− a ≤
√
2a <

√

A2 − 2Aa+ 2a2 <

A <
√

A2 + a2 < 2
√
2a <

A

A− a

√

A2 − 2Aa+ 2a2,

VII if
A

a
∈

[√
5 + 1

2
, 2

]

, therefore we have

0 < A− a ≤ a <
√

A2 − 2Aa+ 2a2 ≤
√
2a <

A <
√

A2 + a2 ≤ A

a

√

A2 − 2Aa+ 2a2 <
√
2A,

VIII if
A

a
∈

[

√
2,

√
5 + 1

2

]

, therefore we have

0 < A− a < a <
√

A2 − 2Aa+ 2a2 <
√
2a ≤

A <
A

a

√

A2 − 2Aa+ 2a2 ≤
√

A2 + a2 <
√
2A,

IX if
A

a
∈
[

λ0,
√
2
]

, therefore we have

0 < A− a < a <
√

A2 − 2Aa+ 2a2 < A ≤
√
2a ≤

A

a

√

A2 − 2Aa+ 2a2 <
√

A2 + a2 <
√
2A,

X if
A

a
∈ ]1, λ0] , therefore we have

0 < A− a < a <
√

A2 − 2Aa+ 2a2 < A <

A

a

√

A2 − 2Aa+ 2a2 ≤
√
2a <

√

A2 + a2 <
√
2A.

We denote with ϕ the angle between the direction of the lines of RD and
the side WU. Because L is symmetric compared to the line between W and V,

we obtain all the possible positions of L compared to RD exactly one time, if

ϕ varies in the interval
[

−π

4
,
π

4

]

.

To facilitate the calculations we denote the angle ϕ ∈
[

−π

4
, 0
[

with −Ψ,

therefore Ψ varies between 0 and
π

4
.

We denote with ds (ϕ) and δs (Ψ) the maximum distance between two par-
allel segments of length s, which make an angle ϕ respectively Ψ with WU. For
different values of s, ϕ and Ψ we compute ds (ϕ) and δs (Ψ) using the expressions
of xs (ϕ) , ys (ϕ) , zs (ϕ) and ws (ϕ) respectively us (Ψ) and vs (Ψ) :

5
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s

W

s

s

s

s

s

x
s
(ϕ )

s

y(s)

z
s
(ϕ )

w
s
(ϕ )

u
s
(ψ )

v
s
(ψ )

V

W U

V

ψ
ϕ

ϕϕ

fig.4

We have:
xs (ϕ) = A cosϕ+ a sinϕ− s sin 2ϕ,

ys (ϕ) = A sinϕ+ a cosϕ− s sin 2ϕ,

zs (ϕ) =
√
2a sin

(

ϕ+
π

4

)

− s

2
sin 2ϕ =

a sinϕ+ a cosϕ− s

2
sin 2ϕ,

ws (ϕ) =
√
2A sin

(

ϕ+
π

4

)

− s sin 2ϕ =

A sinϕ+A cosϕ− s sin 2ϕ,

us (Ψ) = A sinΨ +A cosΨ− s sin 2Ψ,

vs (Ψ) = A sinΨ + a cosΨ− s sin 2Ψ.

The probability that we should search is given by the formula

p (s) =
2

πD







π

4
∫

0

ds (ϕ) dϕ+

π

4
∫

0

δs (Ψ) dΨ






. (1)

The expressions of ds and δs does not change, if s is between two dimensions
that derive from one of the chain of inequalities given in I, II,...X.

For the expression of ds, the diagonal
√
A2 + a2 does not play any role. For δs

we use only the dimensions 0, a ,
√
2a, A and

√
A2 + a2; δs = 0 if s ≥

√
A2 + a2.
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We determine the probability p(s) computing

π

4
∫

0

ds (ϕ) dϕ

and then
π

4
∫

0

δs (Ψ) dΨ

for all the pair of the dimensions that derive from L in the ten chains of inequal-
ities.

3 Subcases for ds

We need angles ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5 when they are in the interval
[

0,
π

4

]

;

they are uniquely determined by the formulas

cosϕ0 =
a

s
, sinϕ1 =

a

s
,

cosϕ2 =
A− a

s
,

1

sinϕ3

+
1

cosϕ3

=
s

a
,

cosϕ4 =
a√

A2 − 2Aa+ 2a2
and cosϕ5 =

A

s
.
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A − a

A

a

A

ϕ
1

ϕ
2

ϕ
3

ϕ
0

ϕ
4

ϕ
5

A − a

a

a

A

A

fig.5 - The angles ϕ1, ϕ2,..., ϕ5

If the angles exist in
[

0, π
4

]

we have ϕ1 ≤ ϕ3 and ϕ5 < ϕ2;moreover we have

ϕ2 ≤ ϕ0 ⇐⇒ 2a ≤ A,

ϕ5 ≤ ϕ4 ⇐⇒ s ≤ A

a

√

A2 − 2Aa+ 2a2,

ϕ2 ≤ ϕ1 ⇐⇒ s ≤
√

A2 − 2Aa+ 2a2.
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(d1) If 0 ≤ s ≤ min (a,A− a) or A− a ≤ s ≤ a there is

ds (ϕ) = xs (ϕ)

if ϕ ∈
[

0, π
4

]

.

π

4
∫

0

ds (ϕ) dϕ =

π

4
∫

0

xs (ϕ) dϕ =

√
2

2
A+

(

1−
√
2

2

)

a− s

2
.

(d2) If a ≤ s ≤ min
(√

2a,A− a
)

there is

ds (ϕ) =

{

ys (ϕ) if 0 ≤ ϕ ≤ ϕ0,

xs (ϕ) if ϕ0 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ =

ϕ0
∫

0

ys (ϕ) dϕ+

π

4
∫

ϕ0

xs (ϕ) dϕ =

(

1− cosϕ0 − sinϕ0 +

√
2

2

)

A+

(

sinϕ0 + cosϕ0 −
√
2

2

)

a− s

2
.

(d3) If
√
2a ≤ s ≤ min

(

A− a, 2
√
2a
)

there is

ds (ϕ) =

{

ys (ϕ) if 0 ≤ ϕ ≤ ϕ1,

zs (ϕ) if ϕ1 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ =

ϕ1
∫

0

ys (ϕ) dϕ+

π

4
∫

ϕ1

zs (ϕ) dϕ =

(1− cosϕ1)A+ a cosϕ1 −
1

4
(2− cos 2ϕ1) s.

(d4) If a ≤ A− a ≤ s ≤ min
(√

2a,
√
A2 − 2Aa+ 2a2

)

there is

ds (ϕ) =











zs (ϕ) if 0 ≤ ϕ ≤ ϕ2,

ys (ϕ) if ϕ2 ≤ ϕ ≤ ϕ0,

xs (ϕ) if ϕ0 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ =

(√
2

2
+ cosϕ2 − cosϕ0 − sinϕ0

)

A+

(

1−
√
2

2
− cosϕ2 + sinϕ0 + cosϕ0

)

a−
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1

4

(

1 + cos2 ϕ2

)

s.

(d5) If A− a ≤ a ≤ s ≤ min
(√

2a,
√
A2 − 2Aa+ 2a2

)

there is

ds (ϕ) =

{

zs (ϕ) if 0 ≤ ϕ ≤ ϕ0,

xs (ϕ) if ϕ0 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ =

(√
2

2
− sinϕ0

)

+

(

1−
√
2

2
+ sinϕ0

)

− 1

4
(1 + cos 2ϕ0) s.

(d6) If 2
√
2a ≤ s ≤ A− a there is

ds (ϕ) =











ys (ϕ) if 0 ≤ ϕ ≤ ϕ1,

zs (ϕ) if ϕ1 ≤ ϕ ≤ ϕ3,

0 if ϕ3 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (1− cosϕ1)A+ (cosϕ1 + sinϕ3 − cosϕ3) a−

1

4
(2− cos 2ϕ1 − cos 2ϕ3) s.

(d7) If max
(

2
√
2a,

√
A2 − 2Aa+ 2a2

)

≤ s ≤ A there is

ds (ϕ) =

{

zs (ϕ) if 0 ≤ ϕ ≤ ϕ3,

0 if ϕ3 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (1 + sinϕ3 − cosϕ3) a−

1

4
(1− cos 2ϕ3) s.

(d8) If 2a ≤ A ≤ s ≤ 2
√
2a there is

ds (ϕ) =

{

0 if 0 ≤ ϕ ≤ ϕ5,

zs (ϕ) if ϕ5 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (cosϕ5 − sinϕ5) a− s

4
cos 2ϕ5.
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(d9) If A ≤ s ≤ min
(

2a, A
a

√
A2 − 2Aa+ 2a2

)

there is

ds (ϕ) =











0 if 0 ≤ ϕ ≤ ϕ5,

zs (ϕ) if ϕ5 ≤ ϕ ≤ ϕ4,

ws (ϕ) if ϕ4 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (cosϕ4 − sinϕ4)A+

(sinϕ4 − cosϕ4 + cosϕ5 − sinϕ5) a−
1

4
(cos 2ϕ4 + cos 2ϕ5) s.

(d10) If 2a ≤ A and max
(

2a, 2
√
2a

)

≤ s ≤ A
A−a

√
A2 − 2Aa+ 2a2 there is

ds (ϕ) =











0 if 0 ≤ ϕ ≤ ϕ5,

zs (ϕ) if ϕ5 ≤ ϕ ≤ ϕ3,

0 if ϕ3 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (cosϕ5 − cosϕ3 + sinϕ3 − sinϕ5) a−

1

4
(cos 2ϕ5 − cos 2ϕ3) s.

(d11) If max
(

2
√
2a,A− a

)

≤ s ≤
√
A2 − 2Aa+ 2a2 there is

ds (ϕ) =



















zs (ϕ) if 0 ≤ ϕ ≤ ϕ2,

ys (ϕ) if ϕ2 ≤ ϕ ≤ ϕ1,

zs (ϕ) if ϕ1 ≤ ϕ ≤ ϕ3,

0 if ϕ3 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (cosϕ2 − cosϕ1)A+

(1 + cosϕ1 − cosϕ2 + sinϕ3 − cosϕ3) a−
1

4
(1 + cos 2ϕ2 − cos 2ϕ1 − cos 2ϕ3) s.

(d12) If max
(√

2a,A− a
)

≤ s ≤ min
(√

A2 − 2Aa+ 2a2, 2
√
2a

)

there is

ds (ϕ) =











zs (ϕ) if 0 ≤ ϕ ≤ ϕ2,

ys (ϕ) if ϕ2 ≤ ϕ ≤ ϕ1,

zs (ϕ) if ϕ1 ≤ ϕ ≤ π

4
.
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π

4
∫

0

ds (ϕ) dϕ = (cosϕ2 − cosϕ1)A+

(1 + cosϕ1 − cosϕ2) a−
1

4
(1 + cos 2ϕ2 − cos 2ϕ1) s.

(d13) If
√
A2 − 2Aa+ 2a2 ≤ s ≤ min

(

2
√
2a,A

)

there is

ds (ϕ) = zs (ϕ) if 0 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = a− s

4
.

(d14) If
√
A2 − 2Aa+ 2a2 ≤ s ≤ A ≤ 2a there is

ds (ϕ) =

{

zs (ϕ) if 0 ≤ ϕ ≤ ϕ4,

ws (ϕ) if ϕ4 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (cosϕ4 − sinϕ4)A+

(1 + sinϕ4 − cosϕ4)−
1

4
(1− cos 2ϕ4) s.

(d15) If A
a

√
A2 − 2Aa+ 2a2 ≤ s ≤

√
2A (and therefore A ≤ 2a) there is

ds (ϕ) =

{

0 if 0 ≤ ϕ ≤ ϕ5,

ws (ϕ) if ϕ5 ≤ ϕ ≤ π

4
.

π

4
∫

0

ds (ϕ) dϕ = (cosϕ5 − sinϕ5) a− s

2
cos 2ϕ5.

Remark: If s is equal to a dimension of L, the integral

π

4
∫

0

ds (ϕ) dϕ is computed

at least in two different subcases; the result must be also of geometric reasons,

because s −→
π

4
∫

0

ds (ϕ) dϕ is a continuous function. This phenomenon, that

needs also like a proof, takes place for example
- if s = a,therefore ϕ0 = 0 and the formulas given of (d1) and (d2) coincide;

1
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- if s =
√
2a,therefore ϕ0 = ϕ1 = π

4
and (d2) and (d3) give the same result

for

π

4
∫

0

ds (ϕ) dϕ;

- if s =
√
2a = A−a,therefore ϕ2 = 0and also (d4) give the result of (d2) and

(d3) ;
- ifA−a = a,therefore ϕ0 = ϕ2 = 0and the formulas of (d4) and (d5) coincide;
- if s = 2

√
2a,we obtain the same result

i) from (d3) and (d6) , because we have ϕ3 =
π

4
,

ii) from (d6) and (d7) , because we have ϕ1 = 0,

iii) from (d7) and (d8) , because we have ϕ3 =
π

4
and ϕ6 = 0.

- If moreover s = A = 2
√
2a, the formulas that are in (d7) and (d8) coincide

with the formula (d10);
- if 2

√
2a ≤ A− a = s,therefore ϕ2 = 0 and from (d6) and (d11) we obtain

the same value for

π

4
∫

0

ds (ϕ) dϕ;

- if
√
2a ≤ A− a ≤ s = 2

√
2a,the formulas of (d11) and (d12) give the same

result , because ϕ3is egual to
π

4
;

- if
√
A2 − 2Aa+ 2a2 ≤ 2

√
2a = s ≤ A,so (d7) and (d13) give the same

result , because ϕ3 =
π

4
, if moreover s = A,therefore also (d8) gives the same

result of (d7) and (d11);
- if

√
A2 − 2Aa+ 2a2 ≤ 2

√
2a = s = A, therefore also (d8) gives the same

result of (d7) and (d11);
- if s = A ≤ 2a from (d9) and (d14) we obtain the same result, because we

have ϕ5 = 0;

- if s = A
a

√
A2 − 2Aa+ 2a2 = 2a we have ϕ4 =

π

4
and therefore from (d9)

and (d15) we obtain the same result for the integral.

4 Subcases for δs

In this case we consider (if exist in the interval
[

0,
π

4

]

) the angles Ψ0,Ψ1 and

Ψ2 only determined between the formulas

cosΨ0 =
a

s
, sinΨ1 =

a

s
, cosΨ2 =

A

s
.

We have Ψ0 ≤ Ψ1and Ψ2 ≤ Ψ0if the two angles in the written inequality exist.

1
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a

A

A − a

2A

ψ
1

ψ
2

ψ
0

fig.6 - The angles Ψ0, Ψ1 and Ψ2

(δ1) If 0 ≤ s ≤ a there is δs (Ψ) = us (Ψ) if 0 ≤ Ψ ≤ π
4
.

π

4
∫

0

δs (Ψ) dΨ =

π

4
∫

0

us (Ψ) dΨ = A− s

2
.

(δ2) If a ≤ s ≤ min
(√

2a,A
)

there is

δs (Ψ) =

{

vs (Ψ) if 0 ≤ Ψ ≤ Ψ0,

us (Ψ) if Ψ0 ≤ Ψ ≤ π

4
.

π

4
∫

0

δs (Ψ) dΨ =

Ψ0
∫

0

vs (Ψ) d (Ψ) +

π

4
∫

Ψ0

us (Ψ) d (Ψ) =

(1− sinΨ0)A+ a sinΨ0 −
s

2
.

(δ3) If
√
2a ≤ s ≤ A there is

δs (ϕ) =

{

vs (Ψ) if 0 ≤ Ψ ≤ Ψ1,

0 if Ψ1 < Ψ ≤ π

4
.

π

4
∫

0

δs (Ψ) dΨ = (1− cosΨ1)A+ a sinΨ1 −
1

2
(1− cos 2Ψ1) s.

1
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(δ4)

a ≤ A ≤ s ≤
√
2a

δs (ϕ) =











0 if 0 ≤ Ψ ≤ Ψ2,

vs (Ψ) if Ψ2 ≤ Ψ ≤ Ψ0,

us (Ψ) if Ψ0 ≤ Ψ ≤ π

4
.

π

4
∫

0

δs (Ψ) dΨ = (cosΨ2 − sinΨ0)A+ (sinΨ0 − sinΨ2) a− s

2
cos 2Ψ2.

(δ5) If max
(√

2a,A
)

≤ s ≤
√
A2 + a2 there is

δs (ϕ) =











0 if 0 ≤ Ψ ≤ Ψ2,

vs (Ψ) if Ψ2 ≤ Ψ ≤ Ψ1,

0 if Ψ1 ≤ Ψ ≤ π

4
.

π

4
∫

0

δs (Ψ) dΨ = (cosΨ2 − cosΨ1)A+

(sinΨ1 − sinΨ2) a− 1

2
(cos 2Ψ2 − cos 2Ψ1) s.

Remark: The integral

π

4
∫

0

δs (Ψ) dΨ defines a continuous function on
[

0,
√
A2 + a2

]

because
- (δ1) and (δ2)give the same result if s = a ;

- (δ2) and (δ3)coincide if s =
√
2a because Ψ0 = Ψ1 =

π

4
;

- from (δ2) and (δ4) we obtain for s = A at first Ψ2 = 0 and so the same

value for

π

4
∫

0

δs (Ψ) dΨ;

if
√
2a ≤ A = s we have from (δ3) and (δ5) the same result for the integral

of δs.

5 The searched probability

For every s of one interval of every chain I, II,,...X if we obtain from subcases
(d1) , ..., (d15) and (δ1) , ..., (δ5) using the formula (1) the probability p(s) that
L determines on a line of RD a secant of length greater than or equal to s.We
want to give for this last statement some examples:

Proposition 1. If s ≤ a or if A− a ≤ s ≤ a from (d1) and (δ1) we have

p (s) =
1

πD

[(

2 +
√
2
)

A+
(

2−
√
2
)

a− 2s
]

. (2)

1
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Proposition 2. If a ≤ s ≤ A− a ≤
√
2a from (d2) and (δ2) we obtain

p (s) =
1

πD

[

4A+

(

√
2− 2a

s
− 4

√

1− a2

s2
(A− a)

)

− 2s

]

. (3)

Proposition 3. If
√
2a ≤ s ≤ A − a ≤ 2

√
2a,therefore from (d3) and (δ3)

we have

p (s) =
1

πD

[

4

(

1−
√

1− a2

s2

)

A+ 2a

√

1− a2

s2
− a2

s
− s

2

]

. (4)

Proposition 4. If a ≤ A−a ≤ s ≤ min
(√

2a,
√
A2 − 2Aa+ 2a2

)

, therefore
from (d4) and (δ2) we obtain

p (s) =
1

πD

[

2 (A+ a) +

(

√
2− 2a

s
− 4

√

1− a2

s2

)

(A− a) .

+
3

2

(

(A− a)
2

s
− s

)]

(5)

Proposition 5. If
√
5+1

2
a ≤ A ≤ 2a and A

a

√
A2 − 2Aa+ 2a2 ≤ s ≤√

2A,therefore from (d15) we have

p (s) =
1

πD

[

s− 2A (A− a)

s
− 2a

√

1− a2

s2

]

. (6)

Remark. If s = 0 we get from (2) for the probability p (0) that a line of RD

intersects L

p (0) =
1

πD

[(

2 +
√
2
)

A+
(

2−
√
2
)

a
]

. (7)

We consider the convex hull co (L) of L
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A

a

a

A

2(A − a)

co(L)

fig.7 - The convex hull of L

Because the hull of L has the perimeter
(

2 +
√
2
)

A+
(

2−
√
2
)

a we obtain
p (0) by a Cauchy formula the same result, and so also a confirmation for our
result.

6 The distribution function of the chord in L

The fuction F which associates to every number s ∈ [0, diam (L)] the probability
that any line that cuts L determines in L a chord of length greater than or equal
to s. This conditional probability can be to compute using a latticeRD of Buffon
with D > diam (L) by the formula

F (s) = 1− p (s)

p (0)
= 1− p (s) · πD

(

2 +
√
2
)

A+
(

2−
√
2
)

a
. (8)

If s ≤ a or if A− a ≤ s ≤ a we obtain from the proposition1

F (s) =
s

(

2 +
√
2
)

A+
(

2−
√
2
)

a
. (9)

The density f of the distribution of the chord in L is the derivate of F ,
therefore F ′ = f . Only in the situation s ≤ a or A − a ≤ s ≤ a the density is
constant, therefore

f (s) =
1

(

2 +
√
2
)

A+
(

2−
√
2
)

a
.

In all the other case f is not a constant, bacause F (s) is a function of sinϕj (s)
and cosϕj (s) , j = 0, 1, ...5 and of sinΨk (s) and cosΨk (s) , k = 0, 1, 2.
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These functions depend on s in the nonlinear way ; therefore we have

[cosϕ0 (s)]
′
=

a

s2

√

1− a

s2
,

[sinϕ1 (s)]
′
= − a

s2

√

1− a2

s2
, ...,

[cosΨ2 (s)]
′
=

A

s2

√

1− A2

s2
.
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Geometric Probabilities for a Cluster of Needles

and a Lattice of Parallel Planes

Uwe Bäsel

Abstract

n needles (1 ≤ n < ∞, `i = length of needle i) with a common endpoint
are placed at random into a lattice Ra of equidistant parallel planes with
distance a. The probabilities of exactly i intersections between the needles
and Ra are calculated.

For `1 = . . . = `n the limit distribution of the relative number of intersec-
tions as n → ∞ is derived.

AMS Classification: 60D05, 52A22, 78M05

AMS 2000 Subject Classification: geometric probability, stochastic ge-
ometry, random sets and random convex sets, method of moments

1 Introduction

We consider a cluster Zn of n needles (1 ≤ n < ∞) placed at random into a lattice
Ra of parallel and equidistant planes (see figure 1):

Ra = {(x, y, z) ∈ R
3 |x = ka, k ∈ Z} .

Each needle of Zn is fixed with one endpoint in the centre C of Zn and can rotate
independently about this centre. `i denotes the length of needle i. We assume
max((`j + `k) ≤ a; j, k ∈ {1, 2, . . . , n}) so that Zn can intersect at most one of
the planes of Ra (except sets with measure zero). A random placement of Zn into
Ra is defined as follows: After placing Zn into Ra the coordinate x of the centre
point C is a random variable uniformly distributed in [0, a]. The second endpoint
of the needle i is uniformly distributed upon the sphere with radius `i and centre
point C. We denote by di, 1 ≤ i ≤ n, the signed projection of the needle i onto the
x-axis. From the last assumption and geometrical considerations it follows that
each di is uniformly distributed in [−`i, `i]. All n+1 random variables x, d1, . . . , dn

are assumed to be stochastically independent.

In the section 2 the intersection probabilities between a cluster Zn with `1 = . . . =
`n and the lattice Ra are calculated. In section 3 the distribution of the relative
number of intersections and the limit distribution as n → ∞ are derived. Section
4 deals with Zn, whose needles have different lengths.

Diaconis [4] derived the distribution of the number of intersections for a needle of
length ` and a lattice of parallel lines of distance d apart with ` > d. He showed,
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2 li

Figure 1: Lattice Ra and cluster Zn

that this distribution converges weakly to an arc sine law as `/d → ∞. Further
intersection probabilities are to be found e. g. in [5], [6], [7], [11], [12] and [13].

2 Intersection probabilities

Theorem 1. A cluster Zn with ` := `1 = . . . = `n is placed at random into the
lattice Ra with λ = `/a ≤ 1/2. The probabilities pn(i) of exactly i intersections
between Zn and Ra are given by

pn(0) = 1 − 2λ

(

1 −
2 − 2−n

n + 1

)

,

pn(i) = 21−nλ

(
n

i

) n−i∑

ν=0

(
n − i

ν

)
ν! i!

(ν + i + 1)!
, if 1 ≤ i ≤ n .

The expectation E(Zn) and the variance Var(Zn) of the number Zn of the inter-
sections between Zn and Ra are

E(Zn) = n
λ

2
and Var(Zn) =

nλ

2

(
n + 2

3
−

nλ

2

)

respectively.

Proof. Due to the symmetry of the problem it is sufficient to consider only x with
0 < x ≤ a/2. A single needle whose point C has fixed coordinate x with 0 < x ≤ `
intersects the lattice, if its endpoint is in a spherical segment above the plane (see
figure 1). The surface area of this segment is 2π`(` − x). The surface area of
the sphere with radius ` is 4π`2. Since the endpoint of the needle is uniformly

2

42 U. BÄSEL



distributed on the surface of the sphere, the probability that the needle intersects
the plane is

2π`(` − x)

4π`2
=

` − x

2`
.

For 0 < x ≤ ` the probability of no intersections is

1 −
` − x

2`
=

` + x

2`
.

If ` < x ≤ a/2 the probability that the needle intersects the plane is equal to zero.

With pn(i |x) we denote the conditional probability of exactly i intersections be-
tween Zn and Ra for fixed x and have

pn(i) =

∫ a/2

x=0

pn(i |x)f(x) dx ,

where f is the density function of x:

f(x) =

{
2/a for 0 ≤ x ≤ a/2 ,
0 else .

For 1 ≤ i ≤ n we have

pn(i |x) =







(
n

i

)(
` − x

2`

)i(
` + x

2`

)n−i

for 0 < x ≤ ` ,

0 for ` < x ≤ a/2 ,

therefore

pn(i) =
21−n

a

(
n

i

) ∫ `

x=0

(

1 −
x

`

)i(

1 +
x

`

)n−i

dx .

With the substitution y = x/` (dx = ` dy) and λ = `/a we get

pn(i) = 21−nλ

(
n

i

) ∫ 1

0

(1 − y)i(1 + y)n−i dy

= 21−nλ

(
n

i

) ∫ 1

0

n−i∑

ν=0

(
n − i

ν

)

yν(1 − y)i dy

= 21−nλ

(
n

i

) n−i∑

ν=0

(
n − i

ν

) ∫ 1

0

yν(1 − y)i dy

= 21−nλ

(
n

i

) n−i∑

ν=0

(
n − i

ν

)

B(ν + 1, i + 1) [3, p. 70]

= 21−nλ

(
n

i

) n−i∑

ν=0

(
n − i

ν

)
Γ(ν + 1)Γ(i + 1)

Γ(ν + i + 2)

= 21−nλ

(
n

i

) n−i∑

ν=0

(
n − i

ν

)
ν! i!

(ν + i + 1)!
,
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where B and Γ are the beta and gamma function respectively. For i = 0 we find

pn(0 |x) =







(
` + x

2`

)n

for 0 < x ≤ ` ,

1 for ` < x ≤ a/2 ,

hence with the substitution y = x/` and λ = `/a

pn(0) =
21−n

a

∫ `

x=0

(

1 +
x

`

)n

dx +
2

a

∫ a/2

x=`

1 dx

= 21−nλ

∫ 1

y=0

(1 + y)n dx + 1 − 2λ

=
21−nλ

n + 1

(
2n+1 − 1

)
+ 1 − 2λ = 1 − 2λ

(

1 −
2 − 2−n

n + 1

)

.

For the first and second moment of Zn we get

E(Zn) =

n∑

i=0

ipn(i) = 21−nλ

n∑

i=1

i

(
n

i

) ∫ 1

0

(1 − y)i(1 + y)n−i dy

= 21−nλ

∫ 1

0

n∑

i=1

i

(
n

i

)

(1 − y)i(1 + y)n−i dy

= 21−nλ

∫ 1

0

2n−1n(1 − y) dy 1

= − nλ

∫ 1

0

(y − 1) dy = n
λ

2

and

E
(
Z2

n

)
=

n∑

i=0

i2pn(i) = 21−nλ

n∑

i=1

i2
(

n

i

)∫ 1

0

(1 − y)i(1 + y)n−i dy

= 21−nλ

∫ 1

0

n∑

i=1

i2
(

n

i

)

(1 − y)i(1 + y)n−i dy

= 21−nλ

∫ 1

0

2n−2n[(n − 1)y2 − 2ny + n + 1] dy 1

=
1

6
n(n + 2)λ

respectively. Therefore we have

Var(Zn) = E
(
Z2

n

)
−

(
E(Zn)

)2
=

nλ

2

(
n + 2

3
−

nλ

2

)

.

1 These sums were calculated with Mathematica. E(Zn) also follows from the additivity of the

expectation.
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Special cases: For n = 1, n = 2, n = 3 and n = 10 the calculation of the
intersection probabilities and variances yields the following results:

n = 1 :

p1(0) = 1 −
λ

2
, p1(1) =

λ

2
, Var(Z1) =

λ

4
(2 − λ) .

p1(1) can also be deduced as special case of results of Stoka [13], Santaló [12,
p. 250] and Duma/Stoka [6], [7].

n = 2 :

p2(0) = 1 −
5λ

6
, p2(1) =

2λ

3
, p2(2) =

λ

6
, Var(Z2) =

λ

3
(4 − 3λ) .

n = 3 :

p3(0) = 1 −
17λ

16
= 1 − 1, 0625λ , p3(1) =

11λ

16
= 0, 6875λ ,

p3(2) =
5λ

16
= 0, 3125λ , p3(3) =

λ

16
= 0, 0625λ , Var(Z3) =

λ

4
(10 − 9λ) .

n = 10 :

p10(0) = 1 −
9217λ

5632
≈ 1 − 1, 63654λ , p10(1) =

509λ

1408
≈ 0, 361506λ ,

p10(2) =
1981λ

5632
≈ 0, 35174λ , p10(3) =

227λ

704
≈ 0, 322443λ ,

p10(4) =
743λ

2816
≈ 0, 263849λ , p10(5) =

2λ

11
≈ 0, 181818λ ,

p10(6) =
281λ

2816
≈ 0, 0997869λ , p10(7) =

29λ

704
≈ 0, 0411932λ ,

p10(8) =
67λ

5632
≈ 0, 0118963λ , p10(9) =

3λ

1408
≈ 0, 00213068λ ,

p10(10) =
λ

5632
≈ 0, 000177557λ , Var(Z10) = 5λ(4 − 5λ) .

3 Distribution functions

As in the last preceding section we assume ` := `1 = . . . = `n. In the following let
Xn denote the ratio

number of intersections between Zn and Ra

n
.

We consider the distribution functions

Fn(x) = P (Xn ≤ x) =







0 for −∞ < x < 0 ,
bnxc
∑

i=0

pn(i) for 0 ≤ x < 1 ,

1 for 1 ≤ x < ∞ .
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Since it is possible to write pn(0) in the form

pn(0) = 1 − 2λ + 21−nλ

(
n

0

) n−0∑

ν=0

(
n − 0

ν

)
ν! 0!

(ν + 0 + 1)!

we have

Fn(x) =







0 for −∞ < x < 0 ,

1 − 2λ + 21−nλ

bnxc
∑

i=0

(
n

i

) n−i∑

ν=0

(
n − i

ν

)
ν! i!

(ν + i + 1)!
for 0 ≤ x < 1 ,

1 for 1 ≤ x < ∞ .

Now we investigate the asymptotic behaviour of Fn as n → ∞.

Theorem 2. As n → ∞, the random variables Xn converge weakly to the random
variable X, whose distribution function is given by

F (x) =







0 for −∞ < x < 0 ,

1 − 2λ(1 − 2x) for 0 ≤ x < 1/2 ,

1 for 1/2 ≤ x < ∞ .

Moreover, it holds the uniform convergence limn→∞ supx∈R
|Fn(x) − F (x)| = 0.

Proof. The proof of the weak convergence is based on the method of moments and
is similar to the proof in [1]. According to the Fréchet-Shohat theorem (see e.g.
[10, pp. 81/82]) we have to show that for each k ∈ N the sequence of moments
E(Xk

n) =
∫ ∞

−∞
xk dFn(x) converges to E(Xk) =

∫ ∞

−∞
xk dF (x) as n → ∞ and the

moments E(Xk), k ∈ N, uniquely determine F .

Since F is a distribution function that is constant outside the interval [0, 1/2], it
is uniquely determined by its moments. These moments are given by

E(Xk) =

∫ ∞

−∞

xk dF (x) = 4λ

∫ 1/2

0

xk dx = 4λ
1

k + 1

(1

2

)k+1

=
λ

(k + 1)2k−1
, k ∈ N . (1)

For the moments E(Xk
n), k ∈ N, we find

E(Xk
n) = E

[
E(Xk

n |x)
]

=
2

a

∫ `

0

E(Xk
n |x) dx ,

where E(Xk
n |x) is the conditional k-th moment of Xn for the cluster centre in

fixed x. We have

E(Xk
n |x) =

n∑

i=0

(
i

n

)k

pn(i |x) =

n∑

i=0

(
i

n

)k (
n

i

)(
` − x

2`

)i(
` + x

2`

)n−i

. (2)

6
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By Zi, i ∈ {1, . . . , n}, we denote the random number of intersections between
needle i and Ra for the cluster center with fixed x and by Mn the arithmetic
mean (Z1 + . . . + Zn)/n. We have E(Zi) = (` − x)/(2`) = E(Z2

i ) and therefore
Var(Zi) = E(Z2

i ) − [E(Zi)]
2 = (` − x)/(2`) − [(` − x)/(2`)]2. Furthermore we find

E(Mn) = E(Z1/n) + . . . + E(Zn/n) = E(Z1) =
` − x

2`
.

Since the random variables Z1, . . . , Zn are independent and identically distributed
we have

Var(Mn) = Var(Z1/n) + . . . + Var(Zn/n) =
1

n
Var(Z1)

=
1

n

[
` − x

2`
−

( ` − x

2`

)2
]

≤
1

n

and therefore Var(Mn) → 0 as n → ∞. From [8, p. 219] it follows that (2)
converges uniformly to [(` − x)/(2`)]k as n → ∞.

Now we get

lim
n→∞

E(Xk
n) = lim

n→∞

2

a

∫ `

0

E(Xk
n |x) dx =

2

a

∫ `

0

lim
n→∞

E(Xk
n |x) dx

=
2

a

∫ `

0

( ` − x

2`

)k

dx = 21−kλ

∫ 1

0

(1 − y)k dy

=
λ

(k + 1)2k−1
, k ∈ N . (3)

The comparison of (3) with (1) shows, that limn→∞ E(Xk
n) = E(Xk) for k ∈ N. It

follows that Fn converges weakly to F as n → ∞.

From the weak convergence it follows that Fn converges uniformly to F in all
points of continuity of F . F is a continuous function, if λ = 1/2. If λ 6= 1/2, F is
continuous except in the point 0. For x = 0 we find

lim
n→∞

Fn(0) = lim
n→∞

pn(0) = lim
n→∞

[

1 − 2λ

(

1 −
2 − 2−n

n + 1

)]

= 1 − 2λ + 2λ lim
n→∞

(
2

n + 1
−

1

(n + 1)2n

)

= 1 − 2λ = F (0) .

Hence the convergence Fn → F is completely uniform. So the proof is finished.

The diagrams in the figures 2 and 3 show examples of distribution functions Fn

and F .

Remark. According to the Lebesgue decomposition theorem (see [2, p. 35]) it is
possible to write F uniquely in the form F = α1Fd + α2Fac + α3Fs, 0 ≤ αi ≤ 1,
α1 + α2 + α3 = 1 with distribution functions Fd, Fac and Fs, where Fd is discrete,

7
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Fac is absolutely continuous and Fs is singular. One finds

Fd(x) =

{
0 for −∞ < x < 0 ,

1 for 0 ≤ x < ∞ ,
Fac(x) =







0 for −∞ < x < 0 ,

2x for 0 ≤ x < 1/2 ,

1 for 1/2 ≤ x < ∞

and α1 = 1 − 2λ, α2 = 2λ, α3 = 0.

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

F

Figure 2: F3 and F for λ = 1/3

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

F

Figure 3: F50 and F for λ = 1/3
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4 Clusters of needles with different lengths

Now we consider a cluster Zn of needles with different lenghts. Ai denotes the
event that needle i intersects Ra. We number the needles in such a way, that
`1 ≥ `2 ≥ · · · ≥ `n > 0. To simplify notation, we define

Jk := {(j1, . . . , jk) | 1 ≤ j1 < · · · < jk ≤ n} .

Theorem 3. The probabilities p(i) of exactly i, 1 ≤ i ≤ n, intersections between
Zn and Ra are for

max((`j + `k) ≤ a; j, k ∈ {1, 2, . . . , n})

given by

p(i) =

n∑

k=i

(−1)i+k

(
k

i

)
∑

Jk

P (Aj1 ∩ · · · ∩ Ajk
) (4)

with

P (Aj1 ∩ · · · ∩ Ajk
) =

`jk

2k−1a
∏k−1

m=1
`jm

k∑

ν=1

(−1)ν−1 `ν−1

jk

ν(ν + 1)

∑

Ik−ν

k−ν∏

ρ=1

`iρ
, (5)

where Ik−ν := {(i1, . . . , ik−ν) | i1 < · · · < ik−ν} is any subset of Jk−1 with 1 ≤ ν ≤
k.

Proof. Formula (4) is the inclusion-exclusion principle (see [15]). So we have to
calculate the probabilities P (Aj1 ∩ · · · ∩ Ajk

) for `j1 ≥ · · · ≥ `jk
. For fixed x,

0 < x ≤ a/2, (see fig. 1) the conditional probability P (Aj1 ∩ · · · ∩ Ajk
|x) is

P (Aj1 ∩ · · · ∩ Ajk
|x) =

{ ∏k
ρ=1

(`jρ
− x)/(2 `jρ

) , if 0 < x < `jk
,

0 , if `jk
≤ x ≤ a/2 .

So we have

P (Aj1 ∩ · · · ∩ Ajk
) =

2

a

∫ `jk

0

P (Aj1 ∩ · · · ∩ Ajk
|x) dx

=
2

a

∫ `jk

0

`j1 − x

2`j1

· · ·
`jk

− x

2`jk

dx

=
1

2k−1a `j1 · · · `jk

∫ `jk

0

(`j1 − x) · · · (`jk
− x) dx

︸ ︷︷ ︸

=: I

.

For the calculation of the integral I we consider it as a function of the parameter
`jk

and differentiate with respect to `jk
(see [9, pp. 688-689]):

I ′(`jk
) =

∫ `jk

0

∂

∂`k

[
(`j1 − x) · · · (`jk

− x)
]
dx
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=

∫ `jk

0

(`j1 − x) · · · (`jk−1
− x) dx

+ 1 · (`j1 − `jk
) · · · (`jk

− `jk
) − 0 · `j1 · · · `jk

︸ ︷︷ ︸

0

=

∫ `jk

0

k∑

ν=1

(−1)ν−1 xν−1
∑

Ik−ν

k−ν∏

ρ=1

`iρ
dx

=
k∑

ν=1

(−1)ν−1
`ν
jk

ν

∑

Ik−ν

k−ν∏

ρ=1

`iρ
.

We integrate this expression with respect to `jk
and get

I(`jk
) =

k∑

ν=1

(−1)ν−1
`ν+1

jk

ν(ν + 1)

∑

Ik−ν

k−ν∏

ρ=1

`iρ
+ C

= `2
jk

k∑

ν=1

(−1)ν−1
`ν−1

jk

ν(ν + 1)

∑

Ik−ν

k−ν∏

ρ=1

`iρ
+ C .

For `jk
= 0 we have

∫ `jk

0

(`j1 − x) · · · (`jk
− x) dx = 0

and

`2
jk

k∑

ν=1

(−1)ν−1
`ν−1

jk

ν(ν + 1)

∑

Ik−ν

k−ν∏

ρ=1

`iρ
= 0 .

Hence the constant C of integration is equal to zero. It follows

P (Aj1 ∩ · · · ∩ Ajk
) =

1

2k−1a `j1 · · · `jk

`2
jk

k∑

ν=1

(−1)ν−1`ν−1

jk

ν(ν + 1)

∑

Ik−ν

k−ν∏

ρ=1

`iρ

=
`jk

2k−1a
∏k−1

m=1
`jm

k∑

ν=1

(−1)ν−1 `ν−1

jk

ν(ν + 1)

∑

Ik−ν

k−ν∏

ρ=1

`iρ

and the proof is complete.

Special cases: At first we consider the special case n = 3. One finds

P (A1) =
`1

2a
, P (A2) =

`2

2a
, P (A3) =

`3

2a
, P (A1 ∩ A2) =

(3`1 − `2)`2

12a`1

,

P (A1 ∩ A3) =
(3`1 − `3)`3

12a`1

, P (A2 ∩ A3) =
(3`2 − `3)`3

12a`2

,

P (A1 ∩ A2 ∩ A3) =

[
6`1`2 − 2(`1 + `2)`3 + `2

3

]
`3

48a`1`2

.
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With the inclusion-exclusion principle in the form of equation (4) and λ1 := `1/a,
λi := `i/`1, i ∈ {2, . . . n}, we get

p(1) =
λ1

[
8λ3

2 + λ2
3(2 + 3λ3) + 2λ2(12 − 3λ3 + λ2

3)
]

48λ2

,

p(2) =
λ1

[
−4λ3

2 + λ2
3(2 − 3λ3) + 2λ2(6λ2 + 3λ3 + λ2

3)
]

48λ2

,

p(3) =
λ1λ3

[
2λ2(3 − λ3) − λ3(2 − λ3)

]

48λ2

.

Note that from `3 ≤ `2 it follows that λ3 ≤ λ2. So these formulas are valid for
(λ2, λ3) ∈ F := {(x, y) ∈ R

2 | 0 < x ≤ 1 , 0 < y ≤ x).

Now we consider p(1) as function f : F → [0, 1] and ask for the values of λ2 and
λ3 for which f has extrema. One finds for the system of equations

fλ2
(λ2, λ3) :=

∂f(λ2, λ3)

∂λ2

=
λ1

[
16λ3

2 − λ2
3(2 + 3λ3)

]

48λ2
2

= 0

fλ3
(λ2, λ3) :=

∂f(λ2, λ3)

∂λ3

=
λ1

[
λ2(−6 + 4λ3) + λ3(4 + 9λ3)

]

48λ2

= 0







the solution λ2 = λ3 = 2/13 ≈ 0, 153846 as the only solution in F . For this point
we find

fλ2λ2
fλ3λ3

− f2
λ2λ3

= 1079λ2
1/2304 > 0 and fλ2λ2

= λ1 > 0 .

Hence f = p(1) has its minimum in F in (λ2, λ3) = (2/13, 2/13) with p(1) =
77λ1/156 ≈ 0, 493590λ1. An easy calculation shows that p(1) has its maxi-
mum in F in (λ2, λ3) = (1, 1) with p(1) = 11λ1/16 = 0, 6875λ1. This is the
probability p3(1) from section 3. Furthermore for (λ2, λ3) = (1, 1) one gets
p(2) = p3(2) = 5λ1/16 and p(3) = p3(3) = λ1/16 as maxima of p(2) and p(3)
in F respectively.

The diagrams in the figures 4, . . . , 6 show contourplots of p(1), . . . , p(3) as func-
tions of λ2 and λ3. The diagram in figure 7 shows the contourplot of the probability
P (A1 ∪ A2 ∪ A3) of at least one intersection.

The expectation of the number Z of intersections is given by

E(Z) =
`1 + `2 + `3

2a
=

λ1

2
(1 + λ2 + λ3) .

Now we consider the special case ` := `1 = . . . = `n. At first we calculate
P (Aj1 ∩ · · · ∩ Ajk

) with formula (5). We find

∑

Ik−ν

k−ν∏

ρ=1

`iρ
=

(
k − 1

k − ν

)

`k−ν =

(
k − 1

(k − 1) − (k − ν)

)

`k−ν =

(
k − 1

ν − 1

)

`k−ν
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Figure 4: Contourplot of p(1)
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Figure 5: Contourplot of p(2)
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Figure 6: Contourplot of p(3)
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Figure 7: Contourplot of P (A1 ∪ A2 ∪ A3)
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and therefore with λ = `/a

P (Aj1 ∩ · · · ∩ Ajk
) =

λ

2k−1

k∑

ν=1

(−1)ν−1

ν(ν + 1)

(
k − 1

ν − 1

)

=
λ

2k−1(k + 1)
,

where the sum was calulated with Mathematica. Furthermore we have

∑

Jk

P (Aj1 ∩ · · · ∩ Ajk
) =

(
n

k

)
λ

2k−1(k + 1)

and with formula (4) for 1 ≤ i ≤ n

p(i) = λ

n∑

k=i

(−1)i+k

2k−1(k + 1)

(
k

i

)(
n

k

)

.

With (
k

i

)(
n

k

)

=

(
n

i

)(
n − i

k − i

)

we finally get

p(i) = 2λ

(
n

i

) n∑

k=i

(−1)i+k

2k(k + 1)

(
n − i

k − i

)

,

which provides a different representation of the result of theorem 1.
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Models associated with extended exponential

smoothing

Denis Bosq

Université Pierre et Marie Curie, Paris 6, France

Abstract

We study an extended form of exponential smoothing which is more

�exible than the original one: let (Xt, t ∈ Z) be a real stochastic process,

observed until time n, consider the predictor of Xn+1 de�ned as

X
∗

n+1 = α

∞∑

j=0

β
j
Xn−j , (α ∈ R, β ∈ R)

where the series is supposed to be convergent in mean square. We look

for stochastic models such that X∗

n+1 is the best linear predictor of Xn+1,

given Xt, t ≤ n.

We obtain various ARIMA models depending on (α, β). In this context

we study estimation of (α, β). Finally, extension to functional stochastic

processes is considered.

Keywords exponential smoothing, prediction, forecasting, estimation, ARIMA,
Hilbertian ARIMA.

MSC2010 classi�cation 62M20, 62F10.

1 Exponential smoothing

The well known exponential smoothing (ES) is commonly used to forecast eco-
nomic series. That genuine method has been introduced and studied by R.Brown
(1962): given the observed random variables X0, X1, ..., Xn, one constructs a
predictor of the non-observed random variable Xn+1 by setting

X̂n+1 = (1− β)
n
∑

j=0

βjXn−j , (0 < β < 1) . (1)

In the current paper, we propose a more general theoretical form of ES and
extend it to the functional case.

1
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Let X = (Xt, t ∈ Z) be a real stochastic process observed until time n;
consider the predictor X∗

n+1 of Xn+1 de�ned by

X∗

n+1 = α

∞
∑

j=0

βjXn−j , (α ∈ R, β ∈ R), (2)

where the series is supposed to be convergent in mean-square. In (2) we use the
convention 00 = 1. Note that (1) corresponds with a truncated form of (2) in
the special case where α = 1− β and 0 < β < 1.

Our purpose is to �nd stochastic models such that X∗
n+1 is the best linear

predictor (BLP) of Xn+1, given Xt, t ≤ n.

If X is stationary, we exhibit such models in Section 2. Estimation of (α, β)
is considered in Section 3. We look at the non-stationary case in Section 4.
Finally, Section 5 is devoted to the in�nite dimensional situation.

2 Stationary models

Note �rst that the predictor de�ned by (2) is �exible. For example, if X1, ..., Xn,
Xn+1 are i.i.d. and Xt = 0, t ≤ 0, the choice β = 1 and α = 1

n
gives X∗

n+1 = X̄n.

On the contrary, α = 1 and β = 0 yields X∗
n+1 = Xn. Note also that ES is

recursive :
X∗

n+1 = αXn + βX∗

n, n ∈ Z. (3)

Now the following statement exhibits the model associated with ES if X is
supposed to be (weakly) stationary (see Brockwell and Davies (1991) (BD) for
the de�nitions here and below).

Proposition 2.1. Suppose that 0 < |β| < 1, |α+ β| < 1, α 6= 0. If X is a
regular zero-mean stationary process with innovation ε = (εt, t ∈ Z) and such
that X∗

n+1 is BLP for every n, then X is ARMA (1,1):

Xt − (α+ β)Xt−1 = εt − βεt−1, t ∈ Z. (4)

Conversely, if X satis�es (4), then X∗
n+1 is BLP for every n.

Proof. First, stationarity of X and condition |β| < 1 yield L2- convergence of
the series in (2). Now, since X is regular with innovation ε, one has

Xt = X∗

t + εt, t ∈ Z, (5)

where

X∗

t = α

∞
∑

j=0

βjXt−1−j .

hence
εt = Xt − αXt−1 − αβXt−2 − αβ2Xt−3 − ..., (6)

2
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Now set

R(z) = 1− αz − αβz2 − αβ2z3 − ... =
1− (α+ β) z

1− βz
, |z| < 1, (7)

and let B be the backward operator de�ned by

B(Xt) = (Xt−1).

From (6) and (7) it follows that

(εt) = (I − (α+ β)B) (I − βB)
−1

(Xt),

where I is identity, which is equivalent to (4).
Conversely, if (4) holds, (6) follows and, from (5), one get (2).

In some special cases the model is more simple:

� If α = 0 then X∗
t = 0, thus

Xt = εt t ∈ Z;

� If β = 0, 0 < |α| < 1, the model is AR(1):

Xt = αXt−1 + εt t ∈ Z;

� If α+ β = 0, 0 < |β| < 1, then

Xt = εt − βεt−1, t ∈ Z;

and the model is MA(1).

The case |α+ β| ≥ 1, which leads to a non-stationary model, appears in Section
4.

3 Estimating the parameters

If X is gaussian, the parameters α, β and σ2 = Eε2t can be estimated by maxi-
mum likelihood (see Gourieroux and Monfort (1990)(GM) ).

In the general case, one may use empirical methods: let γk = E(X0Xk),k ∈ N

be the autocovariance of X. From (4) we have:











γ0 = (α+ β) γ1 + (1− αβ)σ2

γ1 = (α+ β)γ0 − β σ2

γk = (α+ β)k−1γ1, k ≥ 2

it follows that

3
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α+ β = γ2

γ1

βσ2 =
γ0γ2−γ2

1

γ1

(1− αβ)σ2 = γ0 − γ2

(8)

Thus, an estimator of
(

α, β, σ2
)

can be constructed by substituting γ0, γ1, γ2
for the empirical covariances

γ̂k =
1

n− k + 1

n−k
∑

i=0

XiXi+k; k = 0, 1, 2; n ≥ 2.

Note that the system (8) is somewhat di�cult to solve.

Now, consistency and asymptotic normality of the obtained estimator
(

α̂, β̂, σ̂2

)

come from general results concerning estimation of ARMA processes ( see BD
and GM).

Finally, if |αβ| is small, one may neglect it and uses the estimators:

α̃ =
γ̂2
1 − γ̂2

2

γ̂1(γ̂0 − γ̂2)
,

β̃ =
γ̂0γ̂2 − γ̂2

1

γ̂1(γ̂0 − γ̂2)
,

σ̃2 = γ̂0 − γ̂2 .

4 The non-stationary case

If the case |α+ β| ≥ 1, we take Xt = 0, t < 0 and we suppose that EXt = 0,
0 <

∣

∣EX2
t

∣

∣ < ∞, t ≥ 0. Then X∗
n+1 is given by

X∗

n+1 = α

n
∑

j=0

βjXn−j , n ∈ Z, (9)

note that, in particular, one has X∗
0 = 0.

Proposition 4.1. If |α+ β| ≥ 1 and the BLP is given by (9), then

Xt − (α+ β)Xt−1 = εt − βεt−1, t ≥ 1, (10)

where
εt = Xt −X∗

t , t ≥ 0. (11)

Moreover
Vt := sp {X0, ..., Xt} = sp {ε0, ..., εt} , t ≥ 0 (12)

and
εs⊥εt, s 6= t.

4
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Proof. From (11) one has

εt − βεt−1 = (Xt −X∗

t )− β
(

Xt−1 −X∗

t−1

)

, t ≥ 1,

and (9) yields (10).
Now (10) and an easy induction give

Xt = εt + α

t−1
∑

j=0

(α+ β)
j
εt−1−j , t ≥ 1,

when (11) implies

εt = Xt − α

t−1
∑

j=0

βjXt−1−j , t ≥ 1,

and, since X0 = ε0, (12) follows.
Finally, X∗

t being the orthogonal projection of Xt on Vt−1, it follows that

εt = Xt −X∗

t ⊥Vt−1,

hence
εs⊥εt , s 6= t.

Now, with an additional assumption, (εt) becomes a white noise. Let us set

Yt = Xt − (α+ β)Xt−1, t ∈ Z, (13)

note that Y0 = X0 = ε0 and Yt = 0 t < 0.

Corollary 4.2. If Yt =Xt − (α + β)Xt−1, t ≥ 1 is stationary and non-
degenerated, and if β 6= 0, then (εt, t ≥ 1) is the innovation of (Yt, t ≥ 1).

Proof. First we show that (εt, t ≥ 0) is a white noise. From Proposition 4.1 it
su�ces to verify that Eε2t is strictly positive and does not depend on t. We have

c1 := E(YtYt+1) = E [(εt − βεt−1)(εt+1 − βεt)] = −βEε2t , t ≥ 1.

hence

Eε2t = −c1β
−1, t ≥ 1.

On the other hand

c0 := EY 2
2 = E (ε2 − βε1)

2
= −c1β

−1(1 + β2) > 0, (14)

since (Yt) is not degenerated.
Finally Y1 = ε1 − βε0 yields

−c1β
−1(1 + β2) = −c1β

−1 + β2Eε20

5
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which implies

Eε20 = −c1β
−1.

Now, set
Wt = sp {Y0, ..., Yt} , t ≥ 0,

then Wt ⊆ Vt, and since

εt =
t

∑

j=0

βj Yt−j , t ≥ 0,

it follows that
Wt = Vt , t ≥ 0.

Finally from Yt =εt−βεt−1,we deduce that the best linear predictor of Yt given
Wt−1 is

Y ∗

t = −βεt−1 , t ≥ 1

(recall that Y0 = ε0).

In the special case where 0 < β < 1 and α = 1−β, one obtains the IMA(1,1)
de�ned by

Xt −Xt−1 = εt − βεt−1, t ≥ 1,

a well known result (cf Brown (1962)).
Note that, (Yt) being a one-sided MA(1), there is no condition concerning β.

If one wants to extend (Yt), in order to obtain a two-sided MA(1), it is necessary
to suppose that 0 < |β| < 1 (cf BD) or at least that |β| = 1 (cf Blanke and Bosq
(2010)).

We now give some ideas concerning Estimation. In the non-stationary case,
estimation of the parameters is somewhat intricate. However(10) implies

E(XtXt−2) = (α+β)E(Xt−1Xt−2), t ≥ 2,

then, a reasonable empirical estimator of θ =α+ β is

θ̂ =

∑n

t=2
XtXt−2

∑n

t=2
Xt−1Xt−2

, (15)

now, under conditions in the corollary, one may claim that
(

Xt − θ̂Xt−1

)

is

approximately a MA(1) process, for which estimation of β and Eε2t are classical
(cf BD or GM).
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5 Exponential smoothing in a Hilbert space

That �nal section deals with (extended) exponential smoothing in a function
space. In order to be concise enough, we use notation in Bosq and Blanke
(2007).

Suppose that each Xt takes its values in a separable real Hilbert space H,
and that α and β are now in L ( the space of continuous linear operators from
H to H ). We de�ne ES by putting

X∗

n+1 = α





∞
∑

j=0

βj(Xn−j)



 ,

provided the series converges in the space L2
H (Ω, A, P ) . Our main assumption

is

αβ = βα,

it easily follows that

X∗

n+1 = α(Xn) + β(X∗

n),

and Proposition 2.1 becomes:

Proposition 5.1. Suppose that
∥

∥βj0
∥

∥

L
< 1 and

∥

∥(α+ β)j0
∥

∥

L
< 1 for some

integer j0, and that α 6= 0. If (Xt) is a regular zero-mean stationary process
with innovation (εt) and such that X∗

n+1is BLP for every n, then (Xt) is an
ARMAH (1,1):

Xt − (α+ β)(Xt−1) = εt − β(εt−1), t ∈ Z. (16)

Conversely, if (Xt) satis�es (16), X∗
n+1 is BLP for every n.

We omit the proof since it is almost similar to the proof of Proposition 1.
Also, the special cases are analogous.

Concerning estimation, one de�nes the cross autocovariance operators (Ck)
of (Xt) by

Ck(x) = E (≺ X0, x � Xk) , x ∈ H , k ∈ N,

where ≺ . , . �denotes the scalar product in H. Then (16) allows to obtain the
following system











C0 = (α+ β)C1 + (I − αβ)Cε

C1 = (α+ β)C0 − βCε

Ck = (α+ β)k−1 C1, k ≥ 2

where Cεis the autocovariance operator of εt.
It is not possible to directly obtain a system similar to (8) since the operators

Ck and Cε are not invertible. Then, in order to solve the above system, one have
to project on a dn- dimensional subspace of H, where dn is small with respect
to n . We omit the technical details.

7
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Abstract

In this paper we consider a lattice with fundamental cell is composed

by an isosceles triangle and an isosceles trapezium represented in fig. 1

and fig. 16 and we compute the probabilty that a segment of random

position and with costant lenght intersects a side of the lattice.

Keywords: Geometric Probability, stochstic geometry, random sets,

integral geometry.

1 Obstacles isosceles triangles

Let R1 (a, α;m) be a lattice with fundamental cell C01 composed by an isosceles
triangle with base a/2 and angles α, α, π−2α and a trapezium with bases a and
a/2 and angles α, α, π − α, π − α,

(
π
4 ≤ α ≤ π

3

)
, represented in fig. 1;
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1A

A

2A

2/m 2/m

2/m 2/m
2/m 2/m

2/m 2/m1B

3B

2B

B

C
1C

2C

2/m

2/m

1D

1E

2E

3E

E

)1(

01C

)1(

02C

2/m

2/m

D
2D

fig.1

The seven obstacles are isoscele triangles with equal side m/2.
We have

|AB| = |BC| = |AE| = |ED| =
a

4 cos α
,

|A1A2| = m cos α, |B1B3| = |E2E5| = m cos
α

2
,

|B1B2| = |C1C2| = |D1D2| = |E1E2| = m sin
α

2
. (1)

Denoting with o1 the obstacle AA1A2, with o2 the obstacle BB1B2 and with
o3 the obstacle BB1B3 we have that

area o1 =
m2

8
sin 2α, area o2 = area o3 =

m2

8
sin α. (2)

With these values follow that

area C01 =
a2

4
tgα − m2

4
sinα (3 + cos α) . (3)

In similar way, denoting with C
(1)
01 the polygon A1B2B1E2E1A2A1 and with

C
(2)
01 the polygon B1B3C2C1D2D1E5E2B1, we have that

area C
(1)
01 =

a2

16
tgα − m2

4
sinα (1 + cos α) ,

2
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area C
(2)
01 =

3a2

16
tgα − m2

2
sinα. (4)

Consider now, a segment s of random position and with constant lenght

l < min
(

a
2 − m, a

4 cos α
− m

)
; we want compute the probability P

(1)
int that the

segment s intersect a side of the fundamental cell C01.
The position of the segment s is determinated by the middle point O and

by the angle ϕ that it forms with the side CD (or BE) of the cell C01.

In order to compute the probability P
(1)
int we consider the limit positions

of the segment s, for a fixed value of ϕ in the polygon C
(1)
01 and for the limit

positions of s, for teh same value of ϕ in the polygon C
(2)
01 (see fig. 2):

1A

A

2A

1B

3B

2B

'B

C
1C

2C
1D

1E

2E

3E

E

D
2D

1a

'A

3A

5B

4B2a

4a
3a

5a

6a 1F

F

3E

4E

1b

2b
5C

3C

4C
3b

4b

'D

3D

4D

5b

6b

7b

8b

fig.2

Denoting with Ĉ
(1)
01 (ϕ) the determinated figure by the limit positions of s

in the first case and with Ĉ
(2)
01 (ϕ) the determinated figure by limit positions of

s in the second case, the fig. 2 give us:

area Ĉ
(1)
01 (ϕ) =

a2

16
tgα − m2

4
sinα (1 + cos α)−

[areaa1 (ϕ) + areaa2 (ϕ) + ... + areaa6 (ϕ)] (5)

and

area Ĉ
(2)
01 (ϕ) =

3a2

16
tgα − m2

2
sinα−

3
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[areab1 (ϕ) + areab2 (ϕ) + ... + areab8 (ϕ)] . (6)

In the figure

A

2/m2/m

l

1h

fig.3

the triangle A1A2A3 give us

|A1A3|
sinϕ

=
l

sinα
,

then

|A1A3| =
l sinϕ

sinα
. (7)

Considering (1) we have that

h1 = |A1A2| sinϕ = m cos α sinϕ.

Then

areaa1 (ϕ) =
lh1

2
=

m cos α

2
l sinϕ. (8)

In oreder to compute areaa2 (ϕ), we consider the figure

3A

2B
4B

'A

2h

2/l

fig.4

4
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We have that
̂A3B2B4 = Â1A3A2 = α − ϕ

and

h2 =
l

2
sin (α − ϕ) .

By (1) and (6) we obtain that

|A3B2| = |AB| − m − |A1A3| =
a

4 cos α
− m − l sinϕ

sinα
,

and then we have that:

areaa2 (ϕ) =

(
a

4 cos α
− m − l sinϕ

sinα

)
· l

2
sin (α − ϕ) . (9)

Now we consider the figure

B

2B

1B

5B

4B

fig.5

we have that:

B̂B1B2 =
π

2
− α

2
, B̂2B1B5 = π −

(π

2
− α

2
+ ϕ

)
=

π

2
− ϕ +

α

2
,

and with the relation (1)

h3 = |B1B2| sin
(π

2
− ϕ +

α

2

)
= m sin

α

2
cos

(
ϕ − α

2

)
,

then

areaa3 (ϕ) =
lh3

2
=

m sin α
2

2
cos

(
ϕ − α

2

)
. (10)

The figure

5
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2/m

2/m

2E

1E

1F

2F

l

5h

fig.6

give us that:

F̂2F1E = π − (ϕ + α)

and
h5 = l sinϕ.

By triangle EF1F2 follow that:

|EF2|
sin (ϕ + α)

=
|EF1|
sinϕ

=
l

sinα
,

then

|EF1| =
l sinϕ

sinα
, |EF2| =

l sin (ϕ + α)

sinα
. (11)

Considering the (2) we have that:

areaa5 (ϕ) =
|EF2| · h5

2
− areaAA1A2 =

l2 sinϕ sin (ϕ + α)

2 sinα
− m2

8
sin 2α. (12)

From figure

5B

2/l

4h

1B 2F

'F

fig.7

and by (11) follow that:

h4 =
l

2
sin ϕ,

6
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|B1F2| = |BE| − m

2
− l sin (ϕ + α)

sinα
=

a

2
− m

2
− l sin (ϕ + α)

sinα
,

then

areaa4 (ϕ) = |B1F2| · h4 =

[
a − m − 2l sin (ϕ + α)

sinα

]
· l

4
sinϕ. (13)

From the figure

2/l

6h

'F

'A

2A

1F

E

fig.8

and by relation (1) and (11) we obtain that:

Â′A2F1 = F̂2F1E = π − (ϕ + α) ,

h6 =
l

2
sin Â′A2F =

l

2
sin (ϕ + α) ,

|A2F1| = |AE| − m

2
− |EF1| =

a

4 cos α
− m

2
− l sinϕ

sinα
,

then

areaa6 (ϕ) =

(
a

2 cos α
− m − 2l sinϕ

sinα

)
· l

4
sin (ϕ + α) . (14)

Considering in the relation (5) the relations (8), (9), (10), (12), (13) and
(14) we obtain that:

areaĈ
(1)
01 (ϕ) =

a2

16
· tgα − m2

4
sin (1 + cos α)−

[(
atgα − 5m

2
sinα

)
· l

4
cos ϕ +

(
a − m

2
+

5m

2
cos α

)
·

7
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l

4
sinϕ − l2

2
sin 2ϕ − m2

8
sin 2α

]
. (15)

The figure

2/m

B

3B

5C

l

1B
M

1h

fig.9

give us that

Ĉ5B1M = ϕ, |C5M | = l sinϕ.

Then, considering of the relation (2) we have that:

areab1 (ϕ) = areaBB1C5 −
m2

8
sinα =

|BB1| · |MC5|
2

− m2

8
sinα,

i.e.

areab1 (ϕ) =
ml sinϕ

4
− m2

8
sinα. (16)

In order to compute b2 (ϕ) we considering the figure

5C

2C

3C

'B

2h

fig.10

8
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and follow that:

Ĉ5C2C3 = Â1A3A4 = α − ϕ, k2 =
l

2
sin (α − ϕ) .

Moreover, the triangle BB1C5 give us that:

|BC5|
sinϕ

=
l

sin (π − α)
,

i.e.

|BC5| =
l sinϕ

sinα
.

This relation and the (1) give us

|C2C5| = |BC| − m

2
− |BC5| =

a

4 cos α
− m

2
− l sinϕ

sinα
.

Then

areab2 (ϕ) = k2 · |C2C5| =

(
a

4 cos α
− m

2
− l sinϕ

sinα

)
· l

2
sin (α − ϕ) . (17)

The figure 2 and relation (10) give us that:

areab3 (ϕ) = areaa3 (ϕ) =
ml sin α

2

2
· cos

(
ϕ − α

2

)
. (18)

Considering the figure

2D

1D

4D

3D

l

5h

fig.11

we can write that:

k5 = l sinϕ, D̂D4D3 = π − (α + ϕ) .

The triangle DD3D4 give us that:

|DD3|
sin (α + ϕ)

=
l

sinα
=

DD4

sinϕ
,

9
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then

|DD3| =
l sin (α + ϕ)

sinα
, |DD4| =

l sinϕ

sinα
. (19)

The by the (2)

areab5 (ϕ) = areaDD3D4 − areaDD1D2,

i.e.

areab5 (ϕ) =
l2 sin (ϕ + α) sinϕ

2 sinα
− m2

8
sinα. (20)

Compute now the areab4 (ϕ). The figure

4C

2/l

4h

1C

3D

'D

fig.12

and the relation (19) give us that:

k4 =
l

2
sinϕ, |C1D3| = a − m

2
− |DD3| = a − m

2
− l sin (ϕ + α)

sinα
,

then

areab4 (ϕ) = |C1D3| · k4 =

[
a − m

2
− l sin (ϕ + α)

sinα

]
· l

2
sinϕ. (21)

Considering the figure

2/l

6h
4E

5E

4D

'D

3D D

fig.13

10
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by relations (1) and (19) we can write that:

̂E4E5D4 = D̂D4D3 = π − (ϕ + α) ,

k6 =
l

2
sin ̂E4E5D4 =

l

2
sin (ϕ + α) ,

|D4E5| = |BC| − m

2
− |DD4| =

a

4 cos α
− m

2
− l sinϕ

sinα
,

then

areab6 (ϕ) = k6 · |D4E5| =

(
a

4 cos α
− m

2
− l sinϕ

sinα

)
· l

2
sin (ϕ + α) . (22)

The figure

2/l

7h

2E

3E

4E

5E

fig.14

give us the areab7 (ϕ). By relation (1) we have that

|E2E5| = m cos
α

2
,

and

Ê3E2E5 = π − Ê2E5E4, Ê2E5E4 = π −
(α

2
+ ̂E4E5D4

)
=

α

2
+ ϕ,

then
Ê3E2E5 = π − α

2
− ϕ,

and consequently

k7 =
l

2
sin

(
ϕ +

α

2

)
.

11
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We have that:

areab7 (ϕ) = |E2E5| · k7 =
m cos α

2

2
· sin

(
ϕ +

α

2

)
. (23)

The figure

1B

2/l

8h

3E'B

2E

fig.15

give us

k8 =
l

2
sinϕ, |B1E2| = |BE| − m =

a

2
− m,

then

areab8 (ϕ) =
(a

2
− m

)
· l

2
sin ϕ. (24)

Considering in the relation (6) the expressions (16), (17), (18), (20), (21),
(22), (23), and (24) we obtain that:

areaC
(2)
01 (ϕ) =

3a2

16
tgα − m2

2
sinα−

[
al

4
(tgα · cos ϕ + 3 sinϕ) − l2

2
sin 2ϕ − m2

4
sinα

]
. (25)

Denoting with M (1) the set of segments s which have the middle point O in

he fundamental cell C01, with N
(1)
1 the set of segments s completely contanined

in C
(1)
01 and with N

(1)
2 the set of segment s completely contained in C

(2)
01 , we

have [2] that:

P
(1)
int = 1 −

µ
(
N

(1)
1

)
+ µ

(
N

(1)
2

)

µ
(
M (1)

) , (26)

where µ is the Lebesgue measure in Euclidean plane.

In order to compute the measures µ
(
M (1)

)
, µ

(
N

(1)
1

)
and µ

(
N

(1)
2

)
we use

the kinematic Poincaré measure [1]:

dK = dx ∧ dy ∧ dϕ,

where x, y are the coordinates of the point and ϕ is the defined angle.

12
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Since ϕ ∈ [0, α], we have that:

µ
(
M (1)

)
=

α∫

0

dϕ

∫∫

{(x,y)∈C01}

dxdy =

α∫

0

(areaC01) dϕ = αareaC01. (27)

Considering the relation (15) we have that:

µ
(
N

(1)
1

)
=

α∫

0

dϕ

∫∫

n
(x,y)∈C

(1)
01

o
dxdy =

α∫

0

(
areaC

(1)
01

)
dϕ =

α

[
a2

16
· tgα − m2

4
sin α (1 + cos α)

]
−

{[
a
sin2 α

cos α
+ (a − 3m) (1 − cos α)

]
·

l

4
− l2

2
sin2 α − m2

8
α sin 2α

}
. (28)

In the same way by relation (25), we can write that:

µ
(
N

(1)
2

)
=

α∫

0

dϕ

∫∫

n
(x,y)∈ bC(1)

02

o
dxdy =

α∫

0

(
areaĈ

(1)
02

)
dϕ =

α

(
3a2

16
tgα − m2

2
sinα

)
−

[(
1

cos α
− 4 cos α + 3

)
· al

4
− l2

2
sin2 α − m2

4
α sinα

]
. (29)

The relations (3), (25), (27), (28), and (29) give us that:

P
(1)
int =

1

α [a2tgα − m2 sinα (3 + cos α)]
·

{[
2a

cos α
+ a + 3 − 3m − (2a + m) cos α

]
l−

4l2 sin2 α − m2α sinα (1 + cos α)
}

. (30)

For m → 0, the obstacles became points and the probability (30) became:

P (1) =

(
2a

cos α
+ a + 3 − 2a cos α

)
l − 4l2 sin2 α

αa2tgα
. (31)

Moreover, considering the limit values of α, we have that:

P
(1)
1 =

4
[
a

(√
2 + 1

)
+ 3

]
l − 8l2

πa2

for α = π
4 , and

P
(1)
2 =

[
(4a + 3) l − 3l2

]√
3

πa2

for α = π
3 .

13
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2 Obstacles triangles and circular sectors

Let R2 (a, α;m) be the lattice with fundamental cell C02 rappresented in fig. 16

1A

A

2A

2/m 2/m

2/m 2/m
2/m 2/m

2/m 2/m1B

3B

2B

B

C
1C

2C

2/m

2/m

1D

1E

2E

3E

E

2/m

2/m

D
2D

)1(

02C

)2(

02C

m
a

2

fig.16

The obstacles are isosceles triangles denoting same in section 1, with σ1 and
σ2 and four circular sectors of radius m/2, equals, denoting with o3.

Considering the relation (2), we have that:

areao1 =
m2

8
sin 2α, areao3 =

m2

8
sinα. (32)

In the same way

areao2 =
αm2

8
.

By these values follow that:

areaC02 =
a2

4
tgα − m2

8
sin 2α − m2

4
sinα − αm2

2
,

i.e.

areaC02 =
a2

4
tgα − m2

4
sin α (1 + cos α) − αm2

2
. (33)

Denoting with C
(1)
02 the figure A1B2B1E2E1A2A1 and with C

(2)
02 the figure

B1B3C2C1D2D1E3E2B1, we have that:

areaC
(1)
02 =

a2

16
tgα − m2

4
(sinα cos α + α) , (34)

14
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and

areaC
(2)
02 =

3a2

16
tgα − m2

4
(sinα + α) . (35)

We want to compute the probability P
(2)
int that a segment s of random position

and of constant lenght l < min
(

a
2 − m, a

4 cos α
− m

)
intersects a side of the

lattice R2, i.e. the ptobability P
(2)
int that the segment s intersects a side of the

fundamental cell C02.
Denoting with ϕ the angle that the segment s forms with the side CD (or

BE) of the cell C02 and with O the middle point of the segment s.

Denoting with Ĉ
(1)
02 (ϕ), (respectivament Ĉ

(2)
02 (ϕ)), the detrminated figure of

the limit positions of the segment s for a fixed value of ϕ, in C
(1)
02 , (respectiva-

ment Ĉ
(2)
02 (ϕ)):

1A

A

2A

1B

3B

2B

'B

C
1C

2C
1D

1E

2E

3E

E

D
2D

1c

'A

3A

5B

4B2c

4c
3c

4c

6c 1F

F

3E

4E

1d

2d
5C

3C

4C
3d

4d

'D

3D

4D

5d

6d

7d

8d

fig.17

Follow that:

areaĈ
(1)
02 (ϕ) =

a2

16
tgα − m2

4
(sinα cos α + α)−

[areac1 (ϕ) + areac2 (ϕ) + ... + areac6 (ϕ)] , (36)

and

areaĈ
(2)
02 (ϕ) =

3a2

16
tgα − m2

4
(sinα + α)−

15
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[aread1 (ϕ) + aread2 (ϕ) + ... + aread8 (ϕ)] . (37)

The fig. 2 and 17 give us that:

areac1 (ϕ) = areaa1 (ϕ) , areac2 (ϕ) = areaa2 (ϕ) ,

areac4 (ϕ) = areaa4 (ϕ) , areac6 (ϕ) = areaa6 (ϕ) , (38)

and

aread1 (ϕ) = areab1 (ϕ) , aread2 (ϕ) = areab2 (ϕ) , aread4 (ϕ) = areab4 (ϕ) ,

aread6 (ϕ) = areab6 (ϕ) , aread7 (ϕ) = areab7 (ϕ) , aread8 (ϕ) = areab8 (ϕ) .
(39)

We have that:

area
_

B1B2 =
m2

8
(α − sin α) ,

then

areac3 (ϕ) = areaa3 (ϕ) − m2

8
(α − sin α) ,

areac5 (ϕ) = areaa5 (ϕ) − m2

8
(α − sin α) , (40)

and

aread3 (ϕ) = areab3 (ϕ) − m2

8
(α − sinα) ,

aread5 (ϕ) = areab5 (ϕ) − m2

8
(α − sinα) . (41)

The relations (38) and (40) give us

areac1 (ϕ) + areac2 (ϕ) + ... + areac6 (ϕ) =

areaa1 (ϕ) + areaa2 (ϕ) + ... + areaa6 (ϕ) − m2

4
(α − sinα) , (42)

and by relations (39) and (41) follow that:

aread1 (ϕ) + aread2 (ϕ) + ... + aread8 (ϕ) =

areab1 (ϕ) + areab2 (ϕ) + ... + areab8 (ϕ) − m2

4
(α − sin α) . (43)

The relations (36) and (42) give us that:

areaĈ
(1)
02 (ϕ) =

a2

16
tgα − m2

4
(sinα cos α + α)−

[
areaa1 (ϕ) + areaa2 (ϕ) + ... + areaa6 (ϕ) − m2

4
(α − sinα)

]
,
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or, considering the (5),

areaĈ
(2)
01 (ϕ) = areaĈ

(1)
01 − m2

4
(α − sinα) . (44)

In the same way, by relations (37) and (43) follow that:

areaC
(2)
02 (ϕ) =

3a2

16
tgα − m2

4
(sinα + α)−

[
areab1 (ϕ) + areab2 (ϕ) + ... + areab8 (ϕ) − m2

4
(α − sin α)

]
,

i.e., considering the (6),

areaĈ
(2)
02 (ϕ) = areaĈ

(2)
01 (ϕ) . (45)

We have that:

P
(2)
int = 1 −

µ
(
N

(2)
1

)
+ µ

(
N

(2)
2

)

µ
(
M (2)

) , (46)

where

µ
(
M (2)

)
=

α∫

0

(areaC02) dϕ = αareaC02,

µ
(
N

(2)
1

)
=

α∫

0

[
areaĈ

(1)
02 (ϕ)

]
dϕ = µ

(
N

(1)
1

)
− m2

4
α (α − sinα) , (47)

µ
(
N

(2)
2

)
=

α∫

0

[
areaĈ

(2)
02 (ϕ)

]
dϕ = µ

(
N

(1)
2

)
.

With these values the relation (46) became

P
(2)
int = 1 −

µ
(
N

(2)
1

)
+ µ

(
N

(1)
2

)
− m2

4 α (α − sinα)

αareaC02
.

Considering of the relation (27) we can write that:

P
(2)
int = 1 − areaC01

areaC02

[
1 − P

(1)
int

]
+

m2 (α − sinα)

areaC02
. (48)

From here follow that:
P

(2)
int ≥ P

(1)
int .

For m = 0 we have that areaC02 = areaC01 and the relation (48) give us
that:

P (1) = P (2).

17
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A Buffon type problem for an irregular lattice II
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Abstract

In this paper we consider a lattice with fundamental cell is composed

by two isosceles trapezium represented in fig. 1 and we compute the

probabilty that a segment of random position and with costant lenght

intersects a side of the lattice.

Keywords: Geometric Probability, stochstic geometry, random sets,

integral geometry

Let R1 (a, α, β;m) be a lattice with fundamental cell C0 composed by an

isosceles trapezium C
(1)
0 with bases 2a and a and angles α, α, π − α, π − α,(

π
4 ≤ α ≤ π

3

)
and an isosceles trapezium with bases 2a and a and angles β, β, π−

β, π − β, (β ≤ α), represented in fig. 1;

B

2B

3B

1B
2/m

2/m

2/m

2/m 2/m

2/m

1A

2AA 1F F

2F
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2E

3E

E
2/m

2/m

2/m

2/m2/m

2/m
1D

2D D

2C
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C

ma

ma2

ma

fig.1
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The eight obstacles are isoscele triangles with equal side m/2.
We have

|AB| = |EF | =
a

2 cos α
,

|BC| = |DE| =
a

2 cos β
, |B1B2| = |E1E2| = m sin

α

2
,

|B1B3| = |E2E3| = m sin
β

2
, |A1A2| = |F1F2| = m cos

α

2
,

|C1C2| = |D1D2| = m cos
β

2
. (1)

Denoting with o1 the obstacle AA1A2, with o2 the obstacle BB1B2, with o3

the obstacle BB1B3 and with o4 the obstacle CC1C2 we have that

area o1 = area o2 =
m2

8
sin α, area o3 = area o4 =

m2

8
sinβ. (2)

With these values follow that

area C
(1)
0 =

3a2

4
tgα −

m2

2
sinα, area C

(2)
0 =

3a2

4
tgβ −

m2

2
sinβ (3)

and we have that:

area C0 =
a2

4
(tgα + tgβ) −

m2

2
(sinα + sinβ) . (4)

Consider now, a segment s of random position and with constant lenght

l < min
(
a − m, a

2 cos β
− m

)
; we want compute the probability Pint that the

segment s intersect a side of the fundamental cell C0.
The position of the segment s is determinated by the middle point O and

by the angle ϕ that it forms with the side BC of the cell C0.
In order to compute the probability Pint we consider the limit positions of

the segment s, for a fixed value of ϕ in the polygon C
(1)
0 and for the limit

positions of s, for the same value of ϕ in the polygon C
(2)
0 (see fig. 2):

2
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B

2B

3B

1B
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2AA 1F F
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1E

2E

3E

E
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2D D

2C
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3A
'A 7a

4F

3F
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2M

'M
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4a
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3a
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2N

'N

6b

4C
3C

7b
8b

3D
'D
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2b

3b

5E

4E

4b

fig.2

Denoting with Ĉ
(1)
0 (ϕ) the determinated polygon by the limit positions of s

in the first case and with Ĉ
(2)
0 (ϕ) the determinated polygon by limit positions

of s in the second case, the fig. 2 give us:

area Ĉ
(1)
0 (ϕ) = areaC

(1)
0 − [areaa1 (ϕ) + areaa2 (ϕ) + ... + areaa8 (ϕ)] (5)

and

area Ĉ
(2)
0 (ϕ) = areaC

(2)
0 − [areab1 (ϕ) + areab2 (ϕ) + ... + areab8 (ϕ)] . (6)

Considering the figure

3
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1A

2A

3A

1h l

fig.3

we have that

Â3AA2 = π − α, ÂA1A2 = ÂA2A1 =
α

2
, ÂA2A3 = ϕ, Â1A2A3 = ϕ −

α

2
,

Â2A1A3 = π −
α

2
, Â1A3A2 = π −

(
ϕ −

α

2
+ π −

α

2

)
= α − ϕ.

By triangle A1A2A3 follow that

|A1A3|

sin
(
ϕ − α

2

) =
l

sin α
2

=
m cos α

2

sin (α − ϕ)
.

Then

|A1A3| =
l sin

(
ϕ − α

2

)

sin α
2

(7)

and the condition
2l sin (α − ϕ) = m sinα. (8)

Considering the relation (2) we have that

h1 = |A1A2| sin
(
ϕ −

α

2

)
= m cos

α

2
sin

(
ϕ −

α

2

)
,

then

areaa1 (ϕ) =
lh1

2
=

ml

2
cos

α

2
sin

(
ϕ −

α

2

)
. (9)

The figure

4
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5B

2h

'A

2B

3A
2/l

fig.4

give us that

B̂2A3A′ = π − Â1A3A2 = π − α + ϕ, Â3A′B5 = α − ϕ,

then

h2 =
l

2
sin (α − ϕ) .

Moreover by (7) we obtain that

|A3B2| = |AB| − m − |A1A3| =
a

2 cos α
− m −

l sin
(
ϕ − α

2

)

sin α
2

,

and then we have that:

areaa2 (ϕ) = |A3B2| · h2 =

(
a

2 cos α
− m −

l sin
(
ϕ − α

2

)

sin α
2

)
·

l

2
sin (α − ϕ) .

Considering the relation (8) we obtain that:

areaa2 (ϕ) =
al

4 cos α
sin (α − ϕ) −

ml

4
[sin (α − ϕ) + sinϕ] . (10)

Now we consider the figure

5
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3h

B
1B

2B

5B

4B

2/l

fig.5

we have that:

B̂2B1B4 = π −
(π

2
−

α

2
+ ϕ

)
=

π

2
− ϕ +

α

2
,

then

h3 =
l

2
sin B̂2B1B4 =

l

2
cos

(
ϕ −

α

2

)
.

Then

areaa3 (ϕ) = h3 |B1B2| =
ml

2
sin

α

2
cos

(
ϕ −

α

2

)
. (11)

Consider now the figure

2M

1M

E

1E

2E

fig.6

By triangle EF1F2 follow that:

|EM2|

sin (ϕ + α)
=

|EM1|

sinϕ
=

l

sinα
,

6
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then

|EM1| =
l sinϕ

sinα
, |EM2| =

l sin (ϕ + α)

sinα
. (12)

and
h5 = l sinϕ.

Consequently

areaa5 (ϕ) =
l2 sin ϕ sin (ϕ + α)

2 sinα
− areaEE1E2,

i.e.

areaa5 (ϕ) =
l2 sinϕ sin (ϕ + α)

2 sinα
−

m2

8
sinα. (13)

In order to compute areaa4 (ϕ), we consider the figure

1B

4B 'M

4h

2/l

2M
B E

fig.7

and by (12) follow that:

h4 =
l

2
sin ϕ,

|B1M2| = 2a −
m

2
− |EM2| = 2a −

m

2
−

l sin (ϕ + α)

sinα
,

then

areaa4 (ϕ) =

[
2a −

m

2
−

l sin (ϕ + α)

sinα

]
·

l

2
sin ϕ. (14)

From the figure

7
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F

1M

'M

2M

3F

2/l

2/m

6h

fig.8

and by (12) we obtain that:

̂F3F2M1 = π − (ϕ + α) ,

h6 =
l

2
sin (ϕ + α) ,

|F2M1| = |AB| −
m

2
− |EM1| =

a

2 cos α
−

m

2
−

l sinϕ

sinα
,

then

areaa6 (ϕ) =

(
a

2 cos α
−

m

2
−

2l sinϕ

sinα

)
·

l

2
sin (ϕ + α) . (15)

The figure

3F

4F

1F
F

2F

2/
7h

2/m

2/m

fig.9

8
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give us that

F̂4F1F2 = π −
(
ϕ +

α

2

)
, F̂1F4F3 = π − F̂4F1F2 = ϕ +

α

2
,

h7 =
l

2
sin

(
ϕ +

α

2

)
.

Then by (1) we have that

areaa7 (ϕ) = |F1F2| · h7 =
m cos α

2

2
· l sin

(
ϕ +

α

2

)
. (16)

Moreover, by figure

'A

2A 'F

8h

2/l

A

4F

1F2/m 2/m

fig.10

follow that

|A2F1| = a − m, h8 =
l

2
sinϕ,

then

areaa8 (ϕ) =
a − m

2
· l sinϕ. (17)

Considering in the relation (5) the relations (9), (10), (11), (13), (14), (15),
(16) and (17) we obtain that:

areaĈ
(1)
0 (ϕ) = areaC

(1)
0 −

{
atgα

2
l cos ϕ +

(
3a −

m

2
+

m cos α

2

)
· l sinϕ−

l2

4
[sin 2ϕ + ctgα · (1 − cos 2ϕ)] −

m2

8
sinα

}
. (18)

Denoting with M1 the set of segments s which have the middle point O in

he fundamental cell C
(1)
0 , with M2 the set of segments s which have the middle

point O in he fundamental cell C
(2)
0 ,with N1 the set of segments s completely

contanined in C
(1)
0 and with N2 the set of segment s completely contained in

C
(2)
0 , we have [2] that:

Pint = 1 −
µ (N1) + µ (N2)

µ (M1) + µ (M2)
, (19)

9
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where µ is the Lebesgue measure in Euclidean plane.
In order to compute the measures µ (M1) , µ (M2) , µ (N1) and µ (N2) we use

the kinematic Poincaré measure [1]:

dK = dx ∧ dy ∧ dϕ,

where x, y are the coordinates of the point and ϕ is the defined angle.
Since ϕ ∈ [0, α], we have that:

µ (M1) =

α∫

0

dϕ

∫∫

n
(x,y)∈ bC(1)

0 (ϕ)
o

dxdy =

α∫

0

(
areaĈ

(1)
0

)
dϕ = αareaC

(1)
0 (20)

and considering the relation (18) we have that:

µ (N1) =

α∫

0

dϕ

∫∫

n
(x,y)∈ bC(1)

0

o
dxdy =

α∫

0

(
areaĈ

(1)
0 (ϕ)

)
dϕ = αareaC

(1)
0 −

[(
3 − 3 cos α +

sin2 α

2 cos α

)
al −

αctgα − cos 2α

4
l2 −

m2

8
α sin 2α

]
. (21)

Replacing α with β we obtain that:

µ (M2) = βareaC
(2)
0 , (22)

µ (N2) = βareaC
(2)
0 −

[(
3 − 3 cos β +

sin2 β

2 cos β

)
al −

βctgα − cos 2β

4
l2 −

m2

8
β sin 2β

]
. (23)

The relations (19), (20), (21), (22) and (23) give us that:

Pint =
1

3a2 (αtgαβtgβ) − 2m2 (α sinα + β sinβ)
·

{[
6 − 3 (cos α + cos β) +

sin2 α

2 cos α
+

sin2 β

2 cos β

]
al−

αctgα + βctgβ − cos 2α + cos 2β

4
l2 −

m2

8
α (α sinα + β sinβ)

}
. (24)

For m → D, the probability (24) became:

P =
4

3a2 (αtgαβtgβ)

{[
6 − 3 (cos α + cos β) +

sin2 α

2 cos α
+

sin2 β

2 cos β

]
al− .

αctgα + βctgβ − cos 2α + cos 2β

4
l2

}
.

10
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ON JONES S(E)-TRIPLES AND
S(E)-QUADRUPLES IN RINGSZVONKO �ERIN AND GIAN MARIO GIANELLAAbstract. Let x be an element of a commutative ring Q with theidentity e and let R be its subring contining e. In this paper westudy basic properties of the triples (u, v, w) and the quadruples

(u, v, w, z) of elements of the polynomial ring R[x] with the prop-erty that x is a transcendental element over the ring R and u v + e,
v w + e, w z + e, u w + e and v z + e are squares and u, v and w arelinear polynomials. We �nd the whole family of such triples andquadruples parametrized by three arbitrary elements a, b and c in
R. In the special case when the ring R is the integers Z, the fa-mous Jones quadruple (x, x + 2, 4x + 4, 4(x + 1)(2x + 1)(2x + 3))is included in this family. We study these triples and quadru-ples of linear polynomials in great detail. Many properties andidentities for their components and various sums and products areestablished. 1. IntroductionLet R be a ring. For its subset P , an n ∈ R and a natural number

m, we say that a ∈ Rm is a P (n)-m-tuple provided ai aj + n is from Pfor each pair of di�erent indices i and j. An interesting special case iswhen P is the subset S = {x2 : x ∈ R} of all squares of R.In the special case when R is the ring of integers Z, then the S(1)-
m-tuples are called Diophantine m-tuples to honor the hellenic mathe-matician Diophantus of Alexandria who �rst found that ( 1

16
, 33

16
, 17

4
, 105

16
)is the S(1)-quadruple of rationals ([2], [1]). It is interesting that this

S(1)-quadruple is the value of the Jones Diophantine quadruple
(x, x + 2, 4x + 4, 4(x + 1)(2x + 1)(2x + 3))of polynomials for x = 1

16
(see [8] and [9]).In this paper we shall assume (as in [7, Chapter III, �4]) that

• Q is commutative ring with identity e,1991 Mathematics Subject Classi�cation. Primary 11B37, 11B39, 11D09.Key words and phrases. Ring, polynomial ring, squares, P (n)-triple, Euler triple,basic symmetric functions, determinants, generalized determinants, vector cross-product. 1
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2 ZVONKO �ERIN AND GIAN MARIO GIANELLA
• R is a subring of Q and e ∈ R,
• x ∈ Q is a transcendental element over a ring R,and search for the S(e)-quadruples (u, v, w, z) in the polynomial ring

R[x] such that u, v and w are linear. In fact, we shall construct twofamilies of such quadruples that use elements a, b and c of the ring Ras parameters.2. Construction of the S(e)-quadruples in R[x]In order to construct S(e)-quadruples in R[x], we shall �rst describetwo families of S(e)-triples in R[x] and then apply the Arkin-Hoggatt-Strauss upgrading to get the quadruples. The idea comes from theobservation that the equations (for complex numbers)
[(a + d)x + f ][(a + d + a(2 c + 1))x + g] + 1 = (h x + k)2,

[(a + d + a(2 c + 1))x + g](a x + b) + 1 = (u x + v)2,

(a x + b)[(a + d)x + f ] + 1 = (p x + q)2,have essentially two solutions in d, f and g. Hence, if a, b, c ∈ R and
M = a x + b, then

λ± = λ±(a, b, c, x) =
(
M, c2 M ± 2 c, (c + e)2 M ± 2(c + e)

)are S(e)-triples in R[x].Indeed, if a = λ+ and b = λ−, then the components satisfy
a2a3 + e = (c2M + c2)

2, b2b3 + e = (c2M − c2)
2,

a3a1 + e = (c1M + e)2, b3b1 + e = (c1M − e)2,

a1a2 + e = (cM + e)2, b1b2 + e = (cM − e)2,where c2 = c(c + e), c1 = c + e and c2 = 2 c + e.The veri�cation of the �rst relation is as follows: Since
a2a3 + e = (c2M + 2c)[(c + e)2M + 2(c + e)] + e =

c2(c2M2 + 2c2M + 4e) + e = c2

2
M2 + 2c2c2M + 4c2 + e,

(c2M + c2)
2 = c2

2
M2 + 2c2c2M + c2

2 and 4c2 + e = c2
2, it follows thatthe �rst equality holds. The remaining �ve are proved similarly.Let λ̃±1 = c2 M ± c2, λ̃±2 = c1M ± e and λ̃±3 = c M ± e. Hence,

Λ+ = A = A(a, b, c, x) = (λ+ 1, λ+2, λ+3, 4 λ̃+1 λ̃+2 λ̃+3),

Λ− = B = B(a, b, c, x) = (λ− 1, λ− 2, λ− 3, 4 λ̃−1 λ̃−2 λ̃−3)are the Arkin-Hoggatt-Strauss upgrading of the Diophantine triples λ±to the Diophantine quadruples Λ±.
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ON JONES POLYNOMIALS IN RINGS 3The �rst property of the triples a and b is that they are the Euler
S(e)-triples. In other words, there is a z ∈ R such that the triples aand b have the form (u, v, w) with uv + e = z2 and w = u + v + 2z(see [5]).Property 1. For a, b, c ∈ R and x ∈ Q, the following relations hold:

a1 + a2 + 2 ã3 = a3, b1 + b2 + 2 b̃3 = b3.Proof. In order to prove the �rst equality, note that the di�erence
a3 − (a1 + a2 + 2 ã3)is c2Me − c2M = 0. The other equality is proved similarly. �Similarly, the quadruples A and B are the Euler S(e)-quadruples.In other words, there is an h ∈ R such that the quadruples A and Bhave the form (u, v, w, z) with vw + e = (u + h)2, wu + e = (v + h)2,

uv + e = h2, w = u + v + 2h and z = 4h(u + h)(v + h). In view of theProperty 1, it su�ces to establish the following property.Let E denote either A or B. Besides the notation c2 = c(c + e),
c1 = c + e and c2 = 2c + e, we also need cu = uc + e and cu,v = uc + ve.When E = A, we take the upper sign while lower sign is selected for
E = B.Property 2. For a, b, c ∈ R and x ∈ Q, the following relations hold:

E3E4 + e = [2c1M(c2M ± c3) + c4,3]
2,

E4E1 + e = [2M(c2M ± c2) + e]2,

E2E4 + e = [2cM(c2M ± c3,2) + c4]
2.Proof. In order to prove the second equality, note that the di�erence

[2M(c2M ± c2) + e]2 − eis the product 4M(c2M + c2)[M(c2M + c2) + e] that we recognize as
E4E1. The other two equalities are proved similarly. �Notice that when the ring R is the integers Z and a = 1, b = 0 and
c = 1, then the quadruple A is the Jones quadruple.The articles [3] and [4] describe a method of extending any Eu-ler S(e)-quadruple (u, v, w, z) with uv + e = h2, vw + e = (u + h)2,
wu + e = (v + h)2, w = u + v + 2h and z = 4h(u + h)(v + h) to a fam-ily

(u, v, w, z)[m] = (u, um2 + 2hm + v, um2 + 2(u + h)m + w,

4[um2 + (2h + u)m + v + h][um + u + h][um + h])of Euler S(e)-quadruples, where m ∈ R.
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4 ZVONKO �ERIN AND GIAN MARIO GIANELLAThe identities E[m] = E(a, b, c + m, x) show that if we apply thismethod of extension to the S(e)-quadruples E we shall not get anythingnew.The functions Λ± determine the functions Λ̃± : R3 × Q → Q6, where
Ã = Λ̃+(a, b, c, x) and B̃ = Λ̃−(a, b, c, x) have the components
Ẽ1 = cM ± e, Ẽ2 = c2M ± c2, Ẽ3 = 2c1M(c2M ± c3) + c4,3,

Ẽ4 = 2MẼ2 + e, Ẽ5 = c1M ± e, Ẽ6 = 2cM(c2M ± c3,2) + c4,given in the �rst two properties. In di�erent words, the coordinatesof the sextuple Ẽ satisfy the following six relations: Ẽ2
1 = E1 E2 + e,

Ẽ2
2 = E2 E3 + e, Ẽ2

3 = E3 E4 + e, Ẽ2
4 = E4 E1 + e, Ẽ2

5 = E1 E3 + e and
Ẽ2

6 = E2 E4 + e.For a, b, c ∈ R and x ∈ Q, let cA = A(a, b, c, x), etc. This alternativenotation for various quadruples is used in situations when only thevariable c is important.The next property shows that the functions A and Ã can be de-rived from the function B and B̃ and vice versa. The interpretationof the �rst identity is: The second components of B(a, b,−c, x) and
A(a, b, c, x) are equal.Property 3. For a, b, c ∈ R and x ∈ Q, it holds:
A2 = (−c)B

2 , B2 = (−c)A
2 , A3 = (−c1,2)

B
3 = B3 + 4c1, A4 = (−c1)

B
4 ,

Ã1 = B̃1 + 2e, Ã2 = (−c1)
eB
2 = B̃2 + 2c2, Ã3 = B̃3 + 4c3(B̃5 + e),

Ã4 = (−c1)
eB
4 = B̃4 + 4c2B1, Ã5 = B̃5 + 2e, Ã6 = B̃6 + 4c3,2(B̃1 + e),

B3 = (−c1,2)
A
3 , B4 = (−c1)

A
4 , B̃2 = (−c1)

eA
2 , B̃4 = (−c1)

eA
4 .Proof. Since B2 = c2M − 2c, it is clear that B(a, b,−c, x)2 is c2M + 2c,i. e., the second component A2 of the quadruple A. The same switch ofsigns clearly happens also in the second identity. For the third identity,note that B3 = c2

1M − 2c1 and that the equation u + e = −c − e hasthe solution u = −c − 2e = −c1,2. Fortunately, for this u in place of
c in −2c1 we get 2c1. It follows that B(a, b,−c1,2, x)2 = A(a, b, c, x)2.The other identities have similar proofs. �Let d1 = c2 + e and d2 = 2 c2 + e. The following relations for thebasic symmetric functions of the triples a = λ+ and b = λ− involve thenumbers d1, d2, c1, c2, . . .. Perhaps, the most interesting are the threecases when the right hand sides are squares.Let σ1, σ2, σ3, σ4 : R4 → R be the basic symmetric functions de�nedfor x=(a, b, c, d) from R4 by xσ4

= abcd, xσ3
= bcd + acd + abd + abc,

xσ2
= ab + bc + cd + da + ac + bd and xσ1

= a + b + c + d. Let us also
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ON JONES POLYNOMIALS IN RINGS 5de�ne functions σ∗

3 , σ
∗

2, σ
∗

1 : R4 → R by xσ∗

3
= bcd − acd + abd − abc, xσ∗

2

= ab − bc + cd − da + ac − bd and xσ∗

1
= a − b + c − d. Note that xσ∗

1is the determinant of the 1 × 4 matrix [a, b, c, d] (see [10]).We use the same notation for the basic symmetric functions in threevariables σ1, σ2, σ3 : R3 → R de�ned for x=(a, b, c) by xσ1
= a + b + c,

xσ2
= bc + ca + ab, and xσ3

= a b c. Let the functions σ∗

1, σ∗

2 : R3 → Rbe de�ned by xσ∗

1
= a − b + c and xσ∗

2
= b c − c a + a b. Note that xσ∗

1is the determinant of the 1 × 3 matrix [a, b, c] (see [10]).Of course, the values of these functions depend on the kind of objectswe operate on. For the triples they have one meaning and on thequadruples they have another similar e�ect.Property 4. For a, b, c ∈ R and x ∈ Q,
aσ∗

1
− bσ∗

1
= 4e, aσ1

− bσ1
= 4c2, aσ1

+ bσ1
= 4d1M,

aσ∗

1
+ bσ∗

1
= 4c1M, aσ2

− bσ2
= 4c2d1M, aσ2

+ bσ2
= 2d2

1M
2 + 8c2,

aσ3
− bσ3

= 4c2c2M
2, aσ3

+ bσ3
= 2c2M(c2M2 + 4e),

aσ1
bσ1

+ 4c2

2 = 4d2

1M
2, aσ2

bσ2
− 16 c2

1 = d2

1M
2(d2

1M
2 − 4 d2),

aσ3
bσ3

− 16 c2

2
M2 = c2

2
M4(c2

2
M2 − 4 d2), aσ∗

1
bσ∗

1
+ 4e = 4c2

1M
2.Proof. Since aσ1

= 2(d1M + c2) and bσ1
= 2(d1M − c2), it follows thatthe second, the third and the ninth formulae hold. Similarly, the iden-tities aσ∗

1
= 2(c1M + e) and bσ∗

1
= 2(c1M − e) imply that the �rst, thefourth and the last formulae are true. The higher symmetric functionsare treated similarly with somewhat more complicated expressions. �We shall now consider sums of powers of aσ1

, bσ1
, aσ∗

1
, bσ∗

1
, ãσ1

, b̃σ1
,

ãσ∗

1
and b̃σ∗

1
. Let U = d1 M , V = U2, u = c2

2 and v = u2.Property 5. For a, b, c ∈ R and x ∈ Q,
(aσ1

)2 + (bσ1
)2 = 8(V + u), (aσ1

)3 + (bσ1
)3 = 16 U(V + 12d1 − 9e),

(aσ1
)4 + (bσ1

)4 = 32V [V + 24d1 − 18e] + 32v,

(aσ1
)5 + (bσ1

)5 = 64 U [V 2 + 10 V u + 5 v].Proof. Since aσ1
= 2(d1M + c2) and bσ1

= 2(d1M − c2), it follows that
(aσ1

)2 + (bσ1
)2 = 8(d2

1M
2 + c2

2) = 8(V + u). The higher powers givemore complicated expressions that with our notation lead to the aboveidentities. �We can similarly get the formulas for (aσ∗

1
)k + (bσ∗

1
)k, (ãσ1

)k + (b̃σ1
)kand (ãσ∗

1
)k + (b̃σ∗

1
)k (k = 2, 3, 4, 5).In the next three results we consider products of components of A,

B and Ã, B̃. They are di�erences of squares.
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6 ZVONKO �ERIN AND GIAN MARIO GIANELLAProperty 6. For a, b, c ∈ R and x ∈ Q,
A2 B2 + 4 c2 = c4 M2, A3 B3 + 4c2

1 = c4

1 M2,

A4 B4 + 16 c2

2 = 16 M2 (c2

2
M2 − 3 c2 − e)2.Proof. Since A2 = c2M + 2c and B2 = c2M − 2c, it follows that A2B2 =

c4M2 − 4c2, i. e., the �rst equality holds. The third and the fourthcomponents are treated similarly. �Property 7. For a, b, c ∈ R and x ∈ Q,
Ã1 B̃1 + e = c2 M2, Ã3 B̃3 + 4c2

1c
2

3M
2 = (2c1c2M2 + c4,3)

2,

Ã2 B̃2 + c2

2 = c2

2
M2, Ã4 B̃4 + 4c2

2M
2 = (2c2M2 + e)2,

Ã5 B̃5 + e = c2

1M
2, Ã6 B̃6 + 4c2c2

3,2M
2 = (2cc2M2 + c4)

2.Proof. Since Ã1 = cM + e and B̃1 = cM − e, it follows that Ã1B̃1 =
c2M2 − e, i. e., the �rst equality holds.Also, since Ã4 = 2c2M2 + 2c2M + e and B̃4 = 2c2M2 − 2c2M + e,we get Ã4B̃4 = (2c2M2 + e)2 − 4c2

2M
2, i. e., the fourth equality is true.The other components are treated similarly. �3. Squares from componentsThe next item is related to the basic property E2E3 + e = Ẽ2

1 andshows that from the second and the third components of E(a, b, u, x)and E it is possible to get complete squares in many ways.Property 8. For a, b, c, u ∈ R and x ∈ Q,
E(a, b, c + u + e, x)2 E3 + u2 = (E3 + u Ẽ5)

2,

E2 E(a, b, c + u − e, x)3 + u2 = (E2 + u Ẽ1)
2.Proof. Let E = A. The sum A(a, b, c + u + e, x)2 A3 + u2 is the squareof c1(c1 + u)M + 2c1 + u that is clearly A3 + u Ã5. The remainingthree formulae have similar proofs. �It is possible to get complete squares also from products of the secondand the third with the fourth component of both A and B.Property 9. For a, b, c, u ∈ R and x ∈ Q,

E(a, b, c + u, x)2 E4 + 4u(u− e)Ẽ1Ẽ5 + e = [Ẽ3 + 2(u − e)Ẽ1Ẽ5]
2,

E(a, b, c + u, x)3 E4 + 4u(u + e)Ẽ1Ẽ5 + e = (Ẽ3 + 2uẼ1Ẽ5)
2.
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ON JONES POLYNOMIALS IN RINGS 7Proof. Let E = A. Then A(a, b, c + u + e, x)3 A4 + 4u(u + e)Ã1Ã5 + eis the square of 2c2(c1 + u)M2 + 2(3c2 + c1 + uc2)M + 2u + c4,3 thatis clearly Ã3 + 2uÃ1Ã5. The remaining three formulae have similarproofs. �4. Volumes and areas of tetrahedraLet a′ = λ+(a′, b′, c′, x′), b′ = λ−(a′, b′, c′, x′) and M ′ = a′ x′ + b′.For triples u, v, w, z ∈ R3, let |u, v, w, z| and ||u, v, w, z|| denote the(oriented) volume and the sum of the squares of areas of sides of thetetrahedron with vertices u, v, w and z. In other words, |u, v, w, z|is the value of the 4 × 4-matrix with rows (u1, u2, u3, e), (v1, v2, v3, e),
(w1, w2, w3, e) and (z1, z2, z3, e). Also, the square of the area ||u, v, w||of a triangle with vertices u, v and w is the sum

∣∣∣∣∣∣

u2 u3 e

v2 v3 e

w2 w3 e

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

u3 u1 e

v3 v1 e

w3 w1 e

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

u1 u2 e

v1 v2 e

w1 w2 e

∣∣∣∣∣∣

2

.Note that in the 3-dimensional Euclidean space the above volume isdivided by 6 and the square of the area of a triangle by 4. Since in ringsdivision need not be possible, we have dropped these rational factors.Property 10. For a, a′, b, b′, c, c′ ∈ R and x, x′ ∈ Q,
|a, b, a′, b′| = −2|ã, b̃, ã′, b̃′| = 16(M ′ − M)(c − c′),

||a, b, a′, b′|| − 2||ã, b̃, ã′, b̃′|| = 32(M ′ − M)2(c − c′)2.Proof. Let c′
2

= c′(c′ + e), c′1 = c′ + e, etc. Let m1 and m2 denote thematrices 


M c2M + 2c c2
1M + 2c1 e

M c2M − 2c c2
1M − 2c1 e

M ′ (c′)2M ′ + 2c′ (c′1)
2M ′ + 2c′1 e

M ′ (c′)2M ′ − 2c′ (c′1)
2M ′ − 2c′1 e


and 



c2M + c2 c1M + e cM + e e

c2M − c2 c1M − e cM − e e

c′
2
M ′ + c′2 c′1M

′ + e c′M ′ + e e

c′
2
M ′ − c′2 c′1M

′ − e c′M ′ − e e


 .Then |a, b, a′, b′| = det m1 and |ã, b̃, ã′, b̃′| = det m2. The routine calcu-lation of determinants reveals that the �rst formula holds. Even moretedious is the check of the second relation. However, with the helpfrom computers, this task is also easily accomplished. �
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8 ZVONKO �ERIN AND GIAN MARIO GIANELLAFor a, b, c ∈ R, x ∈ Q and a natural number k ∈ N, let
u± = λ±(a, 2k2b2, 2 c2, x) and u′

±
= λ±(a, 2k2b2, 2 c2,−x).The next result is an interesting case when the volume of a tetrahedronfrom the products of u± and u′

±
is a complete square.Let n and o denote binary operations on R3 de�ned by

(a, b, c) n (u, v, w) = (bw − c v, c u− a w, a v − b u),

(a, b, c) o (u, v, w) = (bw + c v, c u + a w, a v + b u).Note that restricted on the space R
3 the product n is the familiarvector cross-product.Property 11. For a, b, c ∈ R, x ∈ Q and k ∈ N,

|u+ n u−, u+ o u−, u′

+ n u′

−
, u′

+ o u′

−
| = (64 k a b c2 c2 d2 x)2.Proof. Let ω± = 2k2b2 ± ax. Then u+ n u− = 4ω+(2c2d2, d2,−2c2), u+

ou− = 2(4c2d2(c2d2ω
2
+ − 2e), d2

2ω
2
+, 4c2

2
ω2

+), u′

+ n u′

−
= 4ω−(2c2d2, d2,

−2c2) and u′

+ o u′

−
= 2(4c2d2(c2d2ω

2
−
− 2e), d2

2ω
2
−
, 4c2

2
ω2
−
). It followsthat the tetrahedron with vertices u+ n u−, u+ o u−, u′

+ n u′

−
and

u′

+ o u′

−
is the square of 64 k a b c2 c2 d2 x. �5. Equal products of differences and sumsFor a, b, c, z, w ∈ R and x, y ∈ Q, let d± = λ±(a, b, c, x − y), s± = λ±

(a, b, c, x + y), d∗

±
= λ±(a, b − z, c, x), s∗

±
= λ±(a, b + z, c, x), d•

±
= λ±

(a − w, b, c, x), s•
±

= λ±(a + w, b, c, x). The following surprising chainsof equalities de�ne triples u and ũ.Property 12. For a, b, c, z, w ∈ R and x, y ∈ Q, the following holds:
u = d+ n s− = s+ n d− = d∗

+ n s∗
−

= s∗+ n d∗

−
= d•

+ n s•
−

= s•+ n d•

−
,

ũ = d̃+ n s̃− = s̃+ n d̃− = d̃∗

+ n s̃∗
−

= s̃∗+ n d̃∗

−
= d̃•

+ n s̃•
−

= s̃•+ n d̃•

−
.Proof. Let d = x − y and s = x + y. Since d+ has the components

ad + b, c(acd + bc + 2e) and c1(ac1d + bc + b + 2e) and the triple s−has the components as + b, c(acs + bc − 2e) and c1(ac1s + bc + b − 2e),the product d+ n s− is u = 4M(c2, c1,−c).Similarly, since d̃+ has the components ac2d + c(bc + b + 2e) + e,
ac1d + bc + b + e and acd + bc + e and the triple s̃− has the compo-nents ac2s + c(bc + b − 2e) − e, ac1s + bc + b − e and acs + bc − e, theproduct d̃+ n s̃− is ũ = −2M(1, c2,−c2

1).All other products in the �rst of the above two chains reduce to uwhile those from the second chain reduce to ũ. �
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ON JONES POLYNOMIALS IN RINGS 9The following result gives values of basic symmetric functions fortriples u and ũ.Property 13. For a, b, c ∈ R and x ∈ Q, the following holds:
uσ∗

1
= 4(c2 − c2)M, ũσ∗

1
= 4 c2 M, uσ1

= 4 d1 M, uσ2
= 0,

ũσ1
= 4 c M, uσ∗

2
= 32 c c2 M2, ũσ∗

2
= 4 [c2

2
− 2c2 − e] M2,

ũσ2
= −4[c2

2
+ 2c2 + c2

2]M
2, uσ3

= −64 c2

2
M3, ũσ3

= 8 c2

2
M3.Proof. We shall only prove that uσ2

= 0. Since u = 4M(c2, c1,−c), wehave uσ2
= 16M2(c2c1 − c2c − c1c) = 16M2[(c2 + c)(c + e) − (c2 + c)c

−(c + e)c] = 0. �6. Sums and differences in the third variableWe now turn to the third variable c and explore the e�ect of addingand subtracting another element d from it.For a, b, c, d ∈ R and x ∈ Q, let d± = λ±(a, b, c − d, x), s± = λ±(a, b,

c + d, x), d̃± = λ̃±(a, b, c − d, x), s̃± = λ̃±(a, b, c + d, x), u = d+ n s−,
v = s+ n d−, p = d+ o s−, q = s+ o d−, ũ = d̃+ ns̃−, ṽ = s̃+ n d̃−, p̃ =
d̃+ o s̃− and q̃ = s̃+ o d̃−.For a = (a1, a2, a3) and b = (b1, b2, b3) in R3, let

a·b =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ +

∣∣∣∣
a3 a1

b3 b1

∣∣∣∣ +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ ,

a :b =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ −
∣∣∣∣

a3 a1

b3 b1

∣∣∣∣ +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ .Note that a·b is the determinant of the rectangular 2 × 3 matrix withrows a and b (see [10]).Property 14. For a, b, c, d ∈ R and x ∈ Q, if M = dM , then
u·v = 64 c2 M

(
e − M

2
)

, ũ·ṽ = 16 c2,3 M
(
M

2
− e

)
,

p·q = 32 c2 dM3
(
c2 − d2

)
, p̃·q̃ = 16 c M

(
c1 c2,−1M

2 − 2e
)
,

u :v = 64 M
(
e − M

2
)

, ũ : ṽ = 16 c2 M
(
M

2
− e

)
,

p :q = 32 M
(
(3c2

2
+ c − d2d

2 − d4)M2 − 4(c2 − d2)
)
,

p̃ : q̃ = 16 c2 M
(
c2 M2 − 2e

)
.Proof. Since u = d+ n s− = 4(e − M)((c2−d2)M+2d, c1M,−cM) and

v = s+ n d− = 4(e + M)((c2 − d2)M − 2d, c1M,−cM), it follows that
u·v = 64 c2 M

(
e − M

2
). The other identities in this property areproved similarly. �
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10 ZVONKO �ERIN AND GIAN MARIO GIANELLAProperty 15. For a, b, c, d ∈ R and x ∈ Q,
p̃σ∗

1
= q̃σ∗

1
= 2

(
2c2 M2 − e

)
,

p̃σ1
+ 2 c4,3 = 4c1M

[
(c2 − d2)M + 2 d

]
,

q̃σ1
+ 2 c4,3 = 4c1M

[
(c2 − d2)M − 2 d

]
.Proof. Let δ = c − d and ζ = c + d. Since d̃+ = (δ(δ + e)M + 2δ + e,

(δ + e)M + e, δM + e) and s̃− = (ζ(ζ + e)M − 2ζ − e, (ζ + e)M − e,

ζM − e), the product p̃ = d̃+ o s̃− is the triple with the components
2(c2 − d2)M2 + 4M − 2e, 2δζc1M

2 + 4c1M − 2c2 and 2c(δ + e)(ζ + e)
M2 + 4cM − 2c2. It follows that p̃σ∗

1
is equal 2 (2c2 M2 − e). The otherclaims in this property are proved similarly. �In the next property we collect formulas for some symmetric sumsof the products g = a o b and g̃ = ã o b̃. In the Property 13, we foundthose sums for the products u = a n b and ũ = ã n b̃.Property 16. For a, b, c, x ∈ R,

gσ∗

1
+ 8 c2 = 2(c2

2
− c2)M

2, g̃σ∗

1
+ 2e = 4 c2 M2,

gσ1
+ 8 c2 = 2 d2

1 M2, g̃σ1
+ 2 c4,3 = 4 c2c1 M2,

gσ2
= 8 c2 M2

(
c2d1M

2 − 2d2

)
, gσ3

= 8 c3

2
M4(c2 M2 − 4e).Proof. The product g has the components 2c2(c2M2 − 4e), 2c2

1M
2 and

2c2M2. It follows that gσ1
+ 8 c2 = 2M2(c2

2
+ c2

1 + c2) = 2d2
1M

2. Also,the product g̃ has the components 2(c2M2 − e), 2(cc2M2 − c2) and
2(c1c2M2 − c2). It follows that g̃σ1

+ 2 c4,3 = 4 c2c1 M2. The otheridentities in this property are proved similarly. �7. Values in sums and productsIn this section we shall show that the last variable x has the propertythat the value of the sums σ1 and σ∗

1 for the functions a, b, ã and b̃in the quadruples (a, b, c, x + x̄) and (a, b, c, x x̄) can be recovered fromtheir values at (a, b, c, x) and (a, b, c, x̄).Let dx = x − x̄, px = x x̄ and sx = x + x̄. Let f be either a or b. If
f = a, then f′ = b and if f = b, then f′ = a.Property 17. For a, b, c ∈ R and x, x̄ ∈ Q, for h either f or f̃ and for
σ either σ1 or σ∗

1,
a dx (sh

x)σ = [a(sx + x̄) + 2 b] xh′

σ − [a(sx + x) + 2 b] x̄h′

σ ,

a dx (ph
x)σ = [a(px + x̄) + 2 b] xh′

σ − [a(px + x) + 2 b] x̄h′

σ .
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ON JONES POLYNOMIALS IN RINGS 11Proof. Let h = a and σ = σ1. Since (sa
x)σ1

= 2[d1 (sM − b) + c2], xb
σ1

=
2[d1 M − c2] and x̄b

σ1
= 2[d1 M̄ − c2], where M̄ denotes a x̄ + b, we geteasily the �rst formula in this case.Similarly, let h = b, σ = σ∗

1 and P = a px + b. Since (pb
x)σ∗

1
= 2(c1

P − e), xa
σ∗

1

= 2(c1M + e) and x̄a
σ∗

1

= 2(c1 M̄ + e), we conclude that thesecond formula holds in this case. �The above formulas are remarkable for many cases which fall underthe same form. The following two results are less uniform but in somerespects are simpler. We select the sign + for f = a and − for f = b.Property 18. For a, b, c ∈ R and x, x̄ ∈ Q,
(sf

x)σ1
+ 2 b d1 = xf′

σ1
+ x̄f′

σ1
± 6 c2,

(sf
x)σ∗

1
+ 2 b c1 = x

f′

σ∗

1

+ x̄
f′

σ∗

1

± 6 e,

(s
ef
x)σ1

+ b (c2 + c2) = x
ef′
σ1

+ x̄
ef′
σ1

± 3c2,3,

(s
ef
x)σ∗

1
+ b (c2 − e) = x

ef′
σ∗

1

+ x̄
ef′
σ∗

1

± 3 c2.Proof. Let f = a. Using the values for (sa
x)σ1

, xb
σ1

and x̄b
σ1

from theprevious proof, we get (sa
x)σ1

− xb
σ1

− x̄b
σ1

= 6 c2 − 2 b d1.Similarly, let f = b. This time, using analogous values for (sb
x)σ∗

1
, xa

σ∗

1and x̄a
σ∗

1

, we get xa
σ∗

1

+ x̄a
σ∗

1

− (sb
x)σ∗

1
= 2bc1 + 6e. �Property 19. For a, b, c ∈ R and x, x̄ ∈ Q,

2(pf
x)σ1

+ 2 b d1(sx − 2e) = x̄ xf′

σ1
+ x x̄f′

σ1
± 2 c2(sx + 2 e),

2(pf
x)σ∗

1
+ 2 b c1(sx − 2e) = x̄ x

f′

σ∗

1

+ x x̄
f′

σ∗

1

± 2(sx + 2 e),

2(p
ef
x)σ1

+ b (c2 + c2)(sx − 2e) = x̄ x
ef′
σ1

+ x x̄
ef′
σ1

± (c2 + 2)(sx + 2 e),

2(p
ef
x)σ∗

1
+ b (c2 − e)(sx − 2e) = x̄ x

ef′
σ∗

1

+ x x̄
ef′
σ∗

1

± c2(sx + 2 e).Proof. Let f = b. Using the values for (pb
x)σ∗

1
, xa

σ∗

1

and x̄a
σ∗

1

from theproof of Properties 18 and 19, we get
x̄ xa

σ∗

1

+ x x̄a
σ∗

1

− 2(pb
x)σ∗

1
= 2 bc1(sx − 2) + 2(sx + 2 e).

�The second variable b in f(a, b, c, x) has analogous property as thefourth variable x. Let s
h
b = h(a, sb, c, x), b̄h′ = h′(a, b̄, c, x), etc.
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12 ZVONKO �ERIN AND GIAN MARIO GIANELLAProperty 20. For a, b, b̄, c ∈ R and x ∈ Q, for h either f or f̃ and for
σ either σ1 or σ∗

1,
db (sh

b)σ = (2 a x + sb + b̄) bh′

σ − (2 a x + sb + b) b̄h′

σ ,

db (ph
b)σ = (2 a x + pb + b̄) bh′

σ − (2 a x + pb + b) b̄h′

σ .Proof. Let h = a and σ = σ1. Since (sa
b)σ1

= 2[d1(sb + 2 a x) + c2] and
bb
σ1

= 2[d1(b + 2 a x) − c2], we get easily the �rst formula in this case.Similarly, let h = b, σ = σ∗

1. Since (pb
b)σ∗

1
= 2[c1(pb + 2 a x) − e] and

ba
σ∗

1

= 2[c1(b + 2 a x) + e], we conclude that the second formula holds inthis case. �The �rst variable a in f(a, b, c, x) also has analogous property asthe second and the fourth variables b and x. Let sh
a = h(sa, b, c, x),

āh′ = h′(ā, b, c, x), etc.Property 21. For a, ā, b, c ∈ R and x ∈ Q, for h either f or f̃ and for
σ either σ1 or σ∗

1,
x da (sh

a)σ = [x(sa + ā) + 2 b] ah′

σ − [x(sa + a) + 2 b] āh′

σ .

x da (ph
a)σ = [x(pa + ā) + 2 b] ah′

σ − [x(pa + a) + 2 b] āh′

σ .Proof. Let h = a and σ = σ1. Since (sa
a)σ1

= 2[d1(b + sa x) + c2] and
ab

σ1
= 2[d1M − c2], we get easily the �rst formula in this case.Similarly, let h = b, σ = σ∗

1. Since (pb
a)σ∗

1
= 2[c1(pa x + b) − e] and

aa
σ∗

1

= 2[c1M + e], we conclude that the second formula holds in thiscase. �The third variable c in the function f(a, b, c, x) is di�erent fromthe other three variables a, b and x. As in Properties 18 and 19,we have four separate cases both for sums and for products. Let
sf

c = f(a, b, sc, x), c̄f′ = f′(a, b, c̄, x), etc.Property 22. For a, b, c, c̄ ∈ R and x ∈ R,
dc(2 pc + sc − e)(sf

c)σ1
=

(sc + c̄ + 1)(c̄2 c + 2 d̄1) cf′

σ1
− (sc + c1)(c2 c̄ + 2 d1)c̄

f′

σ1
,

dc(s
f
c)σ∗

1
= (sc + c̄ + 2e)cf′

σ∗

1

− (sc + c + 2e)c̄f′

σ∗

1

,

dc(2 pc + 3 sc + 7e)(s
ef
c)σ1

=

(sc+c̄+3e)[2 pc+3 sc+2 c̄3+c̄] c
ef′
σ1
−(sc+c+3e)[2 pc+3 sc+2 d1+c]c̄

ef′
σ1

,
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dc(2 pc + sc + 3e)(s

ef
c)σ∗

1
=

(sc + c̄1)[c̄2 c + 2 c̄1 − 2e] c
ef′
σ∗

1

− (sc + c1)[c2 c̄ + 2 c2 − 2e]c̄
ef′
σ∗

1

.Proof. Let f = a. Since (sa
c)σ1

= 2[(2 pc + d1 + d̄1 − e)M + 2 sc + e] and
cb
σ1

= 2[d1 M − c2], we get that the di�erence
(sc + c̄1)(c̄2 c + 2 d̄1) cb

σ1
− (sc + c1)(c2 c̄ + 2 d1)c̄

b
σ1is the product dc(2 pc + sc − e)(sa

c)σ1
. �Property 23. For a, b, c, c̄ ∈ R and x ∈ Q,

dc(2 pc + sc − e)(pf
c)σ1

=

(pc + c̄1)(pc c̄2 + c̄ + 2e) cf′

σ1
− (pc + c1)(pc c2 + c + 2e)c̄f′

σ1
,

dc(p
f
c)σ∗

1
= (pc + c̄ + 2e)cf′

σ∗

1

− (pc + c + 2e)c̄f′

σ∗

1

,

dc(2 pc + 3 sc + 7e)(p
ef
c)σ1

=

(pc+c̄+3e)[pc(2 c̄+3e)+3c̄+2e] c
ef′
σ1
−(pc+c+3e)[pc(2 c+3e)+c3,2]c̄

ef′
σ1

,

dc(2 pc + sc + 3e)(p
ef
c)σ∗

1
=

(pc + c̄1)[pc c̄2 + c̄ − 2e] c
ef′
σ∗

1

− (pc + c1)[pc c2 + c − 2e]c̄
ef′
σ∗

1

.Proof. Let f = b. Since (pb
c)σ∗

1
= 2[(pc + e)M − e] and the sums ca

σ∗

1and c̄a
σ∗

1

are 2[c1M + e] and 2[c̄1M + e], we get that the di�erence
(pc + c̄ + 2)ca

σ∗

1

− (pc + c + 2e)c̄a
σ∗

1

is the product dc(p
b
c)σ∗

1
. �8. Squares from symmetric sumsIn this section we shall show that from basic symmetric functions ofthe triples λ± and quadruples −→

λ± it is possible to get many squares.For example, from Jones linear polynomials x, x + 2 and 4x + 4 weget a square 9(x + 1)2 by taking the sum of products of three pairs
x(x + 2) + x(4x + 4) + (x + 2)(4x + 4) and add 1 (apply Property 25for u = 0 and v = 1). Another possibility is to get (x4 + 3x + 3)2 bytaking the sum of x8 and the product of x4 with the sum 6x + 6 ofpolynomials and the sum of products of three pairs and add 1 as before(apply Property 25 for u = x4 and v = 1).Property 24. For a, b, c, u, v ∈ R and x ∈ Q, the triples λ± satisfy therelations

u2 + u v σ1(λ±) + v2(σ2(λ±) + e) = [u + v(d1 M ± c2)]
2
,
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4 u2 + u v (σ1(λ±)2 − 4e) + v2 σ2(λ±)2 =

[2 u + v(d1 M ± 2c1)(d1 M ± 2c)]2 ,Proof. The di�erence of the left hand side in the �rst identity
u2 + u v σ1(λ±) + v2(σ2(λ±) + e)and its right hand side [u + v(d1 M ± c2)]

2 has the form we − w, where
w = 2v(c1M + e)[v(c2 + e)M + 2vc + u]. Hence, these sides are indeedequal. The second identity has a similar proof. �Let S± = 2 c2 M2(c2 M ± 2 c2) + (11 c2 + 3e)M ± 3 c2. Notice that
S± = Ẽ2Ẽ4 + 2Ẽ2 + E1.Property 25. For a, b, c, u, v ∈ R and x ∈ Q, the quadruples −→λ± satisfythe relations

u2 + u v σ1(
−→
λ±) + v2(σ2(

−→
λ±) + σ4(

−→
λ±) + e) = (u + v S±)2

,

u σ1(
−→
λ±)2 + (v2 − 4 u)(σ2(

−→
λ±) + σ4(

−→
λ±) + e) = (v S±)2

,

u σ1(
−→
λ±)2 + (v2 − 4 u)σ2(

−→
λ±) + 4 (v2 − u) σ4(

−→
λ±) + v2 − 4 u =

[v(2 S± − 3d1M ∓ 3 c2)]
2
.Proof. The di�erence of the left hand side in the �rst identity

u2 + u v σ1(
−→
λ+) + v2(σ2(

−→
λ+) + σ4(

−→
λ+) + e)and its right hand side (u + v S+)2 has the form we − w, where w is thesum ∑

5

i=0
ki M

i with coe�cients k0 = 8c2 u + c8,5c8,3 v, k1 = (cc24,46+
8e)u + 6c2(cc6,27 + 5e)v, k2 = 4c2c2 u + (c3c240,722 + cc600,184 + 16e)v, k3

= 8c2c2(cc10,21 + 3e)v, k4 = 4c2
2
(cc14,25 + 4e)v and k5 = 4c3

2
c2v. Hence,these sides are indeed equal. The remaining two identities have similarproofs. �In particular, when v = e and u = 0, we get the following statement.Property 26. For a, b, c ∈ R and x ∈ Q,

Eσ2
+ Eσ4

+ e = (Ẽ2 Ẽ4 + 2 Ẽ2 + E1)
2.The sum Eσ2

+ 4 Eσ4
+ e is also the complete square. The proof ofthis is almost identical with the proof of the Property 25.Property 27. For a, b, c ∈ R and x ∈ Q,

Eσ2
+ 4 Eσ4

+ e = (2 Ẽ1 Ẽ3 − Ẽ2 − 2 Ẽ1 − E1)
2.On the other hand, we have the following factorization.
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Eσ2

+ 5 Eσ4
+ e = [2c2M(c2M2 ± 2c2) + (9c2 + e)M ± c2]

[10c2M(c2M2 ± 2c2) + (49c2 + 9e)M ± 9c2].Proof. The method for the veri�cation of this identity is identical tothe method used for the Property 25. In the di�erence of the left handside and the right hand side we replace the powers of e with e to getthe expression of the form w e − w, for some element w ∈ R. �References[1] A. Baker and H. Davenport, The equations 3 x2 − 2 = y2 and 8 x2 − 7 = z2,Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.[2] E. Brown, Sets in which x y + k is always a square, Mathematics of Computa-tion, 45 (1985), 613-620.[3] Z. �erin, The extensions of the Euler triples, (preprint).[4] Z. �erin, On extended Euler quadruples, (preprint).[5] L. Euler, Commentationes Arithmeticae I, In Opera Omnia, Series I, volumeII, B.G. Teubner, Basel, 1915.[6] V. E. Hoggatt and G. E. Bergum, A problem of Fermat and the Fibonaccisequence, Fibonacci Quart. 15 (1977), 323-330.[7] N. Jacobson, Lectures in Abstract Algebra, Van Nostrand, London 1966.[8] B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart.J. Math. Oxford Ser. (2), 27 (1976), 349-353.[9] L. Jones, A Polynomial Approach to a Diophantine Problem, Math. Mag. 72(1999), 52-55.[10] M. Radi¢, A de�nition of determinant of rectangular matrix, Glasnik Mat. 1(21) (1966), 17-22.Kopernikova 7, 10010 Zagreb, CROATIA, EuropeE-mail address: cerin@math.hrDipartimento di Matematica, Universita di Torino, Torino, ItalyE-mail address: gianella@dm.unito.it
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Sommario - Riprendendo, gli esiti di una memoria già presentata in occasione 
dell’VI International Conference of “Stochastic Geometry, Convex Bodies, 

Empirical Measure & Applications To Mechanics And Engineering Of Train-

Transport”, viene adesso perfezionata ed applicata ad un caso reale di studio, 
rappresentato da una delle principali linee ferroviarie siciliane, una  
metodologia basata su processi decisionali markoviani, che consente 
l’ottimizzazione della programmazione degli interventi manutentivi.  
Da un analisi critica dei dati assunti dai diversi parametri geometrici del 
binario, nel caso studio relativo alla linea PA-ME periodicamente rilevati 
attraverso treni diagnostici ad alto rendimento, si è verificata la possibilità, con 
le metodiche della programmazione dinamica applicata ai processi decisionali, 
di individuare la migliore politica di intervento tale da garantire sempre 
opportuni livelli di sicurezza d’esercizio e di qualità di marcia, con il minor 
numero di interventi ottimizzando, pertanto, le risorse disponibili ed i 
protocolli manutentivi. 
 
Abstract - From the results of a memory already introduced in the VI 
International Conference of "Stochastic Geometry, Convex Bodies, Empirical 

Measure & Applications To Mechanics And Engineering Of Train-Transport", 
it’s improved now and applied to a real case of study, that is one of the 
principal Sicilian railway lines, a methodology based on Markovian decisional 
trials, that allows to optimize the planning of the maintenance interventions.  
A critical analysis of the different geometric parameters data, monitored by 
diagnostic trains at high-performance on the railway track of the study-case 
related to the line PA-ME, is made up. 
Is, then, emphasized the possibility, with the dynamic planning methodic 
applied to the decisional trials, to individuate the best politics of such 
intervention as a tool for guarantee opportune safety levels in the exercise and 
in the quality of march, optimizing, therefore, the available resources and the 
maintenance protocols. 
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1. EXPERIMENTAL ANALYSIS OF A CASE STUDY. 
 
To verify the practical validity of the model of decisional 

optimization, based on the Markov’s chains type, and proposed on the 
occasion of the VI International Conference of "Stochastic Geometry, 
Convex Bodies, Empirical Measure & Applications To Mechanics And 

Engineering Of Train-Transport”, is chosen to effect an experimental 
analysis on a railway line in exercise, so that to make a will its 
applicability on a real case of railway management 

 
 

1.1. The line Palermo-Messina. 

To verify the practical validity of the model of decisional 
optimization, based on the markov’s chains, and proposed on the 
occasion of the You International Conference of "Stochastic 
Geometry, Convex Bodies, Empirical Measure & Applications To 
Mechanics And Engineering Of Train-Transport, is chosen to effect an 
experimental analysis on a railway line in exercise, so that to make a 
will its applicability on a real case of railway management. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: caratteristiche della linea Palermo Messina 
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Figure 2: Identification of the line of the Compartment of Palermo. 

 
 
 

 

Table 1: Characteristics of the line Messina Palermo 
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The different ones drawn that they compose the whole line 
Palermo Messina with the relative characteristics I am of you bring in 
the tab.1. 

Already in 2004 part was taken to two runs of verification by 
Palermo to Messina, you effects with the diagnostic car to high-
performance Talete connected in tandem with the car Aldebaran, so 
that to be able the first one to effect a relief of the geometry of the 
platform, of the usury of the rails, and of the levels of comfort, the 
second to analyze the electric characteristics, geometric and of 
deterioration of the line of contact. 

Subsequently to the two runs of verification had been delivered 
the in relief data to the Department during the execution of the same 
and those related to the two preceding annuities. 

To such initial data, they are assistant of the others, that the 
Compartment RFI in Palermo has furnished City and Territory to the 
Department. These to be related to the values assumed by the different 
in relief geometric parameters during the diagnostic reliefs had 
actually effected on the line since 2004 to 2007, contained further also 
the historian of the maintenance interventions had realized today 
actually since 2002 to, with the location, the typology and the costs of 
the performed interventions. 

It is so can constitute a bank you date, of the defects and of the 
maintenance interventions performed, relative to a period of inclusive 
general time among 2002 and 2007. 

 
 

 

1.2. The typology of data. 

The data, related to the values of usury of the rails and to those 
assumed by the different analyzed geometric parameters (Rail gauge, 
Skew, Alignment sx and dx, Longitudinal Level sx and dx, 
Transversal Level sx and dx, Slanting, Discard of Transversal level, 
Defect him raising and Horizontal Usury, Vertical, and to 45° sx and 
dx), have been furnished in the form of files manageable through the 
program VISIONA of RFI, that allows to visualize the graphs with 
continuous longitudinal development and to complete through the 
software of visualization and elaboration the necessary activities of 
analysis. 

The data related to the maintenance interventions performed and 
to the values assumed by the indexes of quality of the platform, have 
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been furnished instead in formed .xls. 
The available Database, as it regards the diagnostic reliefs, it 

consists of n. 19 parameters (among geometry and usury) relative to 
every meter of platform, therefore in total around 2.000.000 records 
are managed for every run of relief. For examples are brought the 
measures related to 30 m of platform of the line S.Nicola - Trabia 
(equal platform) between the progressive 26,810 and the progressive 
26,840. You first chart shows the values of rail gauge and slanting, the 
second the values of transversal level, alignment and longitudinal 
level, the third one the values of usury of the rails. 

Gives the fragmentation of the data, due also to the continuous 
execution of the reliefs along the whole line, dates not always the 
presence of a general different number of runs of verification on the 
different ones drawn of the line and a greater or smaller number of 
information on the maintenance interventions performed on the single 
drawn, in the considered temporal arc, is chosen to complete a study 
particularly detailed of the drawn inclusive among Palermo and 
Fiumetorto, of which it had him the most greater number of data, that 
introduces a notable heterogeneity in the layout (straight, curves with 
great, middle and small rays), and different works of art (bridges in 
c.a., metallic bridges, bridges in masonry, galleries, etc..). 

 
 
 

1.3. Analysis of the data related to the geometric parameters. 

The in relief data through the diagnostic Talete carriage are 
analyzed bushels and elaborate for single geometric parameter, 
appraising the assumed values and comparing them with those of 
reference. 

Effecting a comparison among the in relief values to the different 
dates, for every single geometric parameter, they are been able to 
always find not some tied up problem list to the precise location of the 
defect and this because of one perfect setting of the progressive initial 
mileage and to the possible jam of the tools of relief. In terms practical 
such problem is turned into the real difficulty of I compare some 
values assumed in the time with the purpose to appraise the evolution 
of the defect in a datum point of the superstructure and the goodness 
of the maintenance interventions performed. 
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             Figure 3: Values of skew in base 9,0mt, line S.Nicola-Trabia - Feb.2004. 

 

 

 

              Figure 4: Values of  Transversal Level, line S.Nicola-Trabia - Feb.2004. 

 

Analyzing in fact for datum geometric parameter, the courses of 
the values assumed along the progressive one to every effected relief, 
comparing them among them, has been possible to find some 
bewilderments of the values along the progressive one, mostly 
appraisable if they are taken in reference less punctual geometric 
parameters. 

From the analysis for instance of the slanting one in base 9,0 
rather than 2,5 mt. they are been able to mostly underline such 
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bewilderments, that resulted to be evident even more from an analysis 
of the Transversal Level. It is so looked for of timing the various 
reliefs, using as reference the Transversal Level, whose course is 
tightly tied to the course plane-altimetric of the layout. 

 

Sghembo 9,0 - S.Nicola/Trabia
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Figure 5: Values of skew in base 9,0mt. Line S.Nicola-Trabia from Jen.2003 until 
Oct.2004. 

 

 

Figure 6: Zoom of the values sideways by 9.0 mt. line S.Nicola-Trabia from 

Jen.2003 until Oct.2004. 

 

They is so in relief, from a relief to the other, bewilderments 
along the progressive mileage at times in positive of the order of +35 
mt and at times in negative of the order also of -75 mt. Obviously this 
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is born from the lack of a system GPS on board of the Talete carriage 
that integrates him with the odometric wheel that measures the 
progressive one, as it already happens on the diagnostic Archimede 
train or on diagnostic means of new construction. 

From the analysis of the values of transversal level noticed in the 
four runs of verification effected on S.Nicola-Trabia line, that the 
values introduced some anomalies in two cases on the four examined. 
In the relief of June 2004, in fact, the values normally resulted out 
rather staircase in comparison to the in relief values, while in the relief 
of October 2004 the same result to exactly be opposed. 
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Figure7:  Transversal level values, line S.Nicola-Trabia Jen.2003 - Oct.2004. 

 

Therefore an inversion of the relative data is effected to Oct.2004 
and is realized a timing of the same appraising the points of peak and 
the position of the curves, eliminating at the same time the wrong 
data, and getting so the graph in following figure, mostly notices 
where her to him not reliability of the in relief data to the date of 
Giu.2004, perpetually distant from the normal noticed values. 

Is ascertained then that to the timing of the relative data to a 
single geometric parameter it didn't correspond that of the other 
parameters, that resulted to have discards of mileage of different 
entity. All of this therefore it transforms him in an excessive riskiness 
of the since the realization of some evaluation makes impossible 
regarding the evolution of the defect in the time and to the goodness 
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of the performed interventions if the defect is appraised by a punctual 
point of view. It stays however to specify that this however not affect 
the operational goodness of the interventions  to be realized for 
eliminating the defects found following a run of verification, in how 
much as a rule such interventions they interest developments of draws 
some order of the hundred meters. While for the reliefs performed by 
the Archimede train such riskiness it doesn't subsist sight the presence 
of a G.P.S. differential integrated to the odometric wheel. 
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Figure 8: Transversal level value changed, line S.Nicola-Trabia Gen.2003 - Ott.2004 

 

 

Is ascertained then that to the timing of the relative data to a 
single geometric parameter it didn't correspond that of the other 
parameters, that resulted to have discards of mileage of different 
entity. All of this therefore it transforms him in an excessive riskiness 
of the since the realization of some evaluation makes impossible 
regarding the evolution of the defect in the time and to the goodness 
of the performed interventions if the defect is appraised by a punctual 
point of view. It stays however to specify that this however not affect 
the operational goodness of the interventions  to be realized for 
eliminating the defects found following a run of verification, in how 
much as a rule such interventions they interest developments of draws 
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some order of the hundred meters. While for the reliefs performed by 
the Archimede train such riskiness it doesn't subsist sight the presence 
of a G.P.S. differential integrated to the odometric wheel. 

 
 

1.4. Analysis of the data related to the IQB 

To allow a global evaluation of the level of I degrade some 
superstructure in every single draws and its temporal evolution, is 
preferred to make reference to the index of Quality of the Platform in 
draws IQBT. 

As already says, the IQBT and the IQBS are of the synthetic 
indexes of the geometric quality of the platform. They founds him on 
the elaboration of the resultant data from the geometric reliefs of the 
platform, and they makes reference to the standard deviation of some 
geometric parameters: alignment, longitudinal level, raising to level of 
attention.  

The indexes of quality damage a middle and global judgment on 
the geometric quality of the platform, keeping in mind only of some 
parameters, that are those tractable with the most common 
maintenance intervention: the tamping. 

For such motives a careful examination of the values of the 
Indexes of quality of the platform is conducted extrapolated by the 
data noticed by the runs of verification of the Talete carriage, in the 
period of reference. 

For every run of verification they are drawn therefore the values 
of IQBT and relative IQBS, for every draws, to every run of effected 
verification and have been compared with those of reference given by 
RFI.  

From an united analysis for drawn of the IQBT, has been possible 
to verify the course of the indexes of quality of the platform in the 
time, for every draws, verifying the subsistence of a distorted relief, 
that of June 2004, as already noticed by the analysis of the values of 
transversal level. 

You is to the point purged the date-basic one of the diagnostic 
reliefs, of all that distorted data or not reliable. From a further anal of 
the course of the IQB in the time, has been possible to notice as the 
sensitive improvements found for draws her Casteldaccia-S.Flavia and 
Trabia-S.Nicola coincides with the interventions of renewal of the 
equal platform realized between the end of 2006 and the beginning of 
2007. 
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This has confirmed therefore as the qualitative state of the 
railway superstructure is fully described by the indexes of quality of 
the platform, really for its nature and for that of the most greater part 
of the maintenance interventions that realizes him during the ordinary 
maintenance of the same superstructure. 
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Figure 9: IQBT Values, Palermo-Fiumetorto, (2003-2007). 
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Figure 10: IQBT values, Palermo-Fiumetorto, (2003-2007). 
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1.5. The calibration of the markovian model for the definition 

of the trial excellent maintenance. 

 
With the purpose to accomplishedly describe the concrete 

possibility of use of the mathematical model proposed in the VI 
International Conference of "Stochastic Geometry, Convex Bodies, 

Empirical Measure & Applications To Mechanics And Engineering Of 
Train-Transport"

1
, in this paper are underlined in the succession the 

application steps of the method, with the application of the same to a 
real case. 

Taking back the indicators of is proposed by RFI, for the single 
geometric parameters and holding in account how much foreseen by 
the sub-directional operational procedure RFI DMAIMSD PS IFS 002 
0, is chosen to classify the states of the superstructure making 
reference to the index of Quality of the Platform. I am so also defined 
for the IQB, four states in which to classify the level of degrades some 
superstructure through the opportune definition of four values of 
thresholds: 

 

Status Threshold degradation value

0 Optimum level IQB ril. = 1,2

1 Threshold of concern IQB ril. = IQB rif. = 1,8

2 Intervention threshold IQB ril. = 1,25*IQB rif.= 2,25

3 Security Threshold IQB ril. = 1,5*IQB rif. = 2,7
 

Table 6: System status and corresponding threshold values of decay. 

 
From an analysis of the data in possession related to the indexes 

of quality of the platform noticed and to the interventions of 
performed tamping, parameterizing the variation of the quality of the 
platform (IQB) due to the realization of the intervention, has been 
possible to reconstruct the curve of decadence of the index of Quality 
of the Platform in Draws. 

���������������������������������������� �������������������

1
 F. Corriere, D. Di Vincenzo – “A markovian model as a tool for optimization of 

maintenance planning on the railway lines” – VI International Conference of 
"Stochastic Geometry, Convex Bodies, Empirical Measure & Applications To 

Mechanics And Engineering Of Train-Transport", Milazzo 27/05 -03/06 2007 – 
Rendiconti del Circolo Matematico di Palermo – Serie II – Numero 80 – Anno 2008; 
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Figure 3:  Curves of decay line Trabia-S.Nicola, (2003-2004). 

 
 
Through the knowledge of the function of decadence F and from 

the statistic analysis of the data gotten by the measures of the 
structural and functional characteristics (monitoring and relief of the 
indicators of quality) has been possible to define the probabilities of 
transition for the index of quality of the platform in drawn by every 
state toward the other states both in presence of the maintenance 
intervention both in presence of the execution of a simple monitoring; 
the probability of transition represents in conclusion the possibility of 
success of the intervention for assigned level of cost or, in other words 
an indicator of the effectiveness of the intervention. 

Supposing as already says that to the beginning of every period t 
the infrastructure is inspected to mean of diagnostic cars to high-
performance and classified in one of the four been considered. After 
the observation of the qualitative state of the superstructure, must be 
undertakes the decision to continue to use the same one without any 
intervention up to the next period of inspection (action c) or to effect a 
maintenance intervention to restore the best structural and functional 
conditions (action m). we Suppose, besides, that in the state 0 the 
action c is allowed only while in the state 3 the action m is allowed 
only.  
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If then choosing the action c is incurred in every period in the 
costs of management equal to 90, 180 and 450 monetary unities when 
he is respectively in the states 0, 1 and 2. While choosing the action 
m, the maintenance he will effect with which will be wanted to restore 
the optimal level of the superstructure (is 0); the maintenance will 
involve some costs of intervention equal to 1800, 2250 and 2700 
monetary unities according to whether are respectively found there in 
the states 1,2 and 3 when her the action m is undertaken. 

The costs C(i,k) and the probabilities Pij(k) I am therefore 
summaries in the following chart, are assumed where that k = 0,1 
respectively for the actions "c" and "m", and that is, besides, i=0,1,2,3 
the states of the system. 
�

Stato Azione Costi Probabilità di transizione 

i k C(i,k) Pi0(k) Pi1(k) Pi2(k) Pi3(k) 

0 c 90 0,73 0,20 0,07 0,00 

c 180 0,00 0,65 0,30 0,05 

1 
m 1890 0,85 0,15 0,00 0,00 

c 450 0,00 0,00 0,55 0,45 
2 

 m 2340 0,75 0,18 0,07 0,00 

3 m 2790 0,68 0,19 0,08 0,05 

Table 7:  Probability of transiction and Cost.  

�

It intends us therefore to determine that excellent politics of 
substitution that the middle cost of every period makes least.   

The function objective to minimize for the problem in 
examination it will be:  

 

min Φ = 90x00+180x10+1890x11+450x20+2340x21+2790x31 

�
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While the conditions to be respected will be  : 

The condition (5a) can find expression, with limited reference to 

the initial state j = 0, the following formal expression: 

x00+x01 =  x00 P00(0) + x01 P00(1) + 

x10 P10(0) + x11 P10(1) + 

  x20 P20(0) + x21 P20(1) + 

   x30 P30(0) + x31 P30(1) 

e così allo stesso modo per gli stati 1,2 e 3 si avrà: 

x10+x11 =  x00 P00(0) + x01 P00(1) + 

x10 P10(0) + x11 P10(1) + 

  x20 P20(0) + x21 P20(1) + 

   x30 P30(0) + x31 P30(1) 

x20+x21 =  x00 P00(0) + x01 P00(1) + 

x10 P10(0) + x11 P10(1) + 

  x20 P20(0) + x21 P20(1) + 

   x30 P30(0) + x31 P30(1) 

x30+x31 =  x00 P00(0) + x01 P00(1) + 

x10 P10(0) + x11 P10(1) + 

  x20 P20(0) + x21 P20(1) + 

   x30 P30(0) + x31 P30(1) 

that is: 

-0,27x00-x01+0,85x11+0,75x21+0,68x31 = 0 

0,20x00-0,35x11-0,85x11+0,18x21+0,19x31 = 0 

0,07x00+0,30x10-0,45x20-0,93x21+0,08x31 = 0 

0,05x10+0,45x20-x30-0,95x31 = 0 

Furthermore under the conditions that:  

                                        �� =

i k

ikx 1 

and 

                                        x1k > 0              per ogni i, k 
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The solution of the problem, gotten through the algorithm of the 

simplesso, using special software of calculation (LINDO 6.1) it will 
furnish the vector x*=(xik) of the distribution limit of probability that 
minimizes the monthly middle cost  . 

As already says the vector x * it will have the ownership (Dantzig 
and Wolfe) that for every the, the xik will be zero peers except that for 
an alone value of k.  

In such way the politics defined by the conditioned probability to 
undertake the action k in the state j, is not- randomized, that is, the 
action that it prescribes when he is in the state j it is a deterministic 
function of j. 

                                     

�
=

=
K

k

jk

jk

jk

x

x
D

1

*

*

*  

 
The solution of the problem of linear planning furnishes the 

followings results: 
�

(i,k) (0,0) (1,0) (1,1) (2,0) (2,1) (3,1) 

x
*

ik 0,471 0,358 0 0 0,152 0,019 

D
*

ik 1 1 0 0 1 1 

 
Then, the conditioned probabilities Djk derived by the excellent 

solution define the following Political R: to keep on holding the 
superstructure in the states 0 and 1, to effect the interventions of 
maintenance in the states 2 and 3. The middle cost of every period will 
be equal to 516,09 unities of cost  

Comparing besides the curve of ideal decadence gotten through 
the decisional model with that that describes the course given by the 
actions of intervention really performed in the case study, it is noticed 
as the first one allows: a saving of around the 15% of the general 
resources, a value of the IQBT never to the last level of quality and a 
better final value of that real.   .  
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Figure 12:  Comparison of decay curves for line Trabia-S.Nicola, (2003-2004).   

�

�

2. Opinion. 
 

Objective fundamental of a railway maintenance plain  is that to 
succeed in assuring and, eventually, to restore the correct standards of 
comfort and safety necessary for an optimal exercise of the system to 
bound guide.   

For monitor the superstructure and its state of efficiency are 
regularly effected some ordinary or extraordinary runs of verification 
with special diagnostic means to high-performance, following which 
the presence of remarkable defects is appraised, for which will be had 
to effect within times narrow interventions of corrective maintenance. 
In operation of the values assumed by the various parameters that 
introduce non remarkable defects are programmed interventions 
according to a so-called logic of maintenance "on condition."    

The performed interventions, kind if in a logic of ready 
intervention, they don't allow however, in the most greater part of the 
cases, lasting benefits in the time and they involve a difficulty 
organization of the same with a waste of the available resources. It 
results therefore clear as is never necessary to succeed in also 
optimizing the resources thanks to the help of specific systems of 
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support to the decisions. This to allow the realization of those actions 
of functional retraining that assures the necessary conditions of 
reliability of the manufactured article and at the same time optimizes 
the employment of the aforesaid resources.   

The necessity to opportunely analyze, in the phase of 
maintenance management of a superstructure, the manifold technical 
and economic aspects that intervene in the optimization of the 
intervention maintenance, involve the demand to individualize special 
mathematical criterions that allow to preliminarily appraise the best 
strategies of intervention, in relationship to the peculiarities of the 
problem in study.   

For what is asked in fact it is to succeed, thanks to the software 
help of data processing and the programs of mathematical modeling, 
to simulate the behavior of the critical elements of the superstructure, 
succeeding to "to foretell" among how much time the breakdown will 
introduce him, so that to prevent  and to plan to the best the 
interventions to perform during the useful life of the good. Such new 
system of diagnostic it is said " predictive diagnostic". 

The mathematical formulation of the proposed problem, ago 
reference to the theory of the processes of decision of Markov and it 
allows an opportune analytical interpretation of the decisional rules.   

The developed study, has allowed to reach to the definition of a 
special model that, beginning from the integrated analysis of the 
manifold components that characterize the state of I degrade some 
superstructure, it elaborates the best politics of intervention under the 
profile of the quality of march for the consumer and of the safety of 
exercise to the smaller middle cost for unity of time (maximum 
efficiency) under optimal conditions under the profile of the 
employment of the economic resources.   

Particularly, then, from a critical analysis of the data that are 
noticed by the diagnostic means, the demand is underlined to 
accomplishedly characterize the performances assumed by every 
geometric parameter of the order of the platform and to examine the 
values assumed by the index IQB for the planning of the maintenance 
interventions.   

To make, therefore, of easy and immediate use the results which 
is reached for by analytical, it is also looked out upon, in a case study 
example, the solution of the problem of linear planning with the 
relative results, coming, so, to the characterization of those specific 
functional rules that determine the excellent politics of intervention 
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through the maximization of the function objective and under 
conditions of not casualness (the action is deterministic function of the 
state j in which the superstructure is found).   

 It results therefore possible to define a strategy of intervention on 
the whole line beginning from the punctual knowledge of the states of 
I degrade of the single drawn optimizing at the same time the entity of 
the general expense in the optimality of the result in terms of 
efficiency of the superstructure.   

For the attainment of such finalities it is opportune that they are 
developed new techniques of management of the maintenance that 
integrate the actual diagnostic methodologies to intelligent 
technological systems (ITS) that programs in dynamic way the 
maintenance interventions and the runs of verification to effect, 
integrated to systems of data handling type G.I.S., for which becomes 
the availability of a greater number of equipments of relief substantial, 
also installed on traditional convoy opportunely adapted, and endowed 
with systems G.P.S.   

This would also benefit obviously to a greater control of the 
goodness of the maintenance interventions performed, and therefore to 
a best respect of the indicators of effectiveness of the intervention for 
assigned level of cost and for every draws examined. 
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This paper investigates the first passage phenomena (sometimes called first 
exit time or stopping problem). We propose the new method for formulating 
and solving problems connected with first passage phenomena. As an example 
we apply this method to calculation of probabilistic properties of the 
Generalized Maximal Loss.  
 
Keywords: first passage time, stochastic differential equation, generalized 
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1. Introduction. 
 
Observing the phenomenon of reality that surrounds us, we often 

meet to those whose behaviour cannot be predicted (with certainty). 
This may results either from ignorance of deterministic mechanisms 
of evolution as well as the fact that the well-known deterministic 
mechanism is disturbed by random factors. Examples of these include 
prices of financial instruments [1] and risk processes (the terminology 
specific to the actuarial science) [2]. 

Random evolution does not mean the lack of possibility to 
evaluate some of the characteristics and regularities of the analyzed 
phenomenon. To investigate quantitatively the regularities of random 
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phenomena, the mathematical model should be constructed. This 
paper will discuss the probability of leaving a certain area by the 
economical process and the associated risk measure: the Generalized 
Maximum Loss (Generalized Maximal Loss - GML) that can be used 
for example in technical analysis of financial instruments, portfolio 
construction and risk analysis. 

The essence of technical analysis is the use of regularity in prices 
of financial instruments to anticipate price trends. Among other 
things, we can ask the questions: whether the value of shares leaves 
trend channel (Fig. 1), what is the time during which the share price 
will not leave the trend channel, or whether it leaves the trend channel 
through lower boundary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Many risk measures exists, one of the most frequently used by 

investors is the variance or standard deviation [3], [4], [5]. However, 
in accordance with modern risk theories, the variance is a measure of 
uncertainty rather than risk.  

Value at Risk (VaR) is one of the modern risk measures [6], [7]. 
It has many generalizations, Maximum Loss among others (Maximal 
Loss - ML) [8], [9], [10]. The Maximum Loss is defined as follows: 

  
[ ]

( ) ( ) αα −=�
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�
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Fig.1 Trend channel 
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where:  

0S  -  initial value of the equity price, 

( )tML ,α   Maximum Loss (Maximal Loss) on the time horizon t  

and the level of acceptance α . 
We propose certain generalization of the Maximum Loss:  

 
[ ]

( ) ( ) ατα
τ

−=�
�
��

�
� <−

∈
1,,'inf

,'
0 tGMLtSSP

tt
 (2) 

where: 
τ  - the beginning of observation interval of the price of the 

instrument for its minimal value,  

( )tGML ,,τα  - proposed generalization of the maximum loss. 

Since in the limiting cases, +→ 0τ  and −→ tτ  we obtain 
accordingly the Maximum Loss and the Value at Risk (VaR), we can 
conclude that the proposed quantity is a generalization of both the 
Maximum Loss and Value at Risk, making it extremely attractive 
from both theoretical and practical point of view. 

Since most stochastic models of the dynamics of financial 
instruments is based on the Wiener process we take into account 
processes whose evolution is described by ordinary stochastic 
differential equation (in a sense of Ito) [11], [12], [13]: 

 ( ) ( )dWtSbdttSadS ,, +=  (3) 

where: 

S  - equity price, 

W  - Wiener process. 

Under some conditions the solution of the above equation exists 

and is unique. Moreover solution tS  is a Markov process with almost 

all continuous realizations. There are many generalizations of the 
above evolution equation: jump-diffusion and regime-switching 
among others [14], [15]. Proposed method can also be  used in these 
cases. 

 
 
2. First passage time - new solution method. 

 
First passage phenomena arises in many fields: pricing exotic 

instruments [1], [16], credit risk management [17], [18], [19],  
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portfolio optimization [8], [9], [10], ruin probabilities in insurance [2], 
[20], [21], [22], queues [23] and not to mention applications in other 
sciences such as physics [24], [25] biology, social sciences and 
medicine. 

First passage probability (1) (first exit probability) is usually 
obtained by using elegant  martingale technique or by solving so 
called  Pontriagin’s equations [26].  The proposed method requires 
only knowledge of evolution equation of the occupation probability 
(Kolmogorov’s forward equation, also known as Fokker-Planck 
equation or diffusion equation) and generalized function theory [27], 
[28], [29]. The method involves modifying the stochastic evolution 
equation (3) so that the process after reaching a specific set remained 
in there.  

In a case of Generalized Maximal Loss, modification takes the 
form (for the sake of simplicity we assume for the moment the barrier 
at level 0=S , hence we cannot interpret S  as equity price; of course 
it is not a problem, because we can always transform original 
variable): 

 ( ) ( )dWtSbdttSadS mm ,, +=  (4) 

where: 

( ) ( ) ( ) ( ) ( )τθθ −−−= ++ tStSatSatSam ,,,  

( ) ( ) ( ) ( ) ( )τθθ −−−= ++ tStSatSatSam ,,,  

( )
�
�
	

≥

<
=+

01

00

Sfor

Sfor
Sθ  . 

Above modification means that, when process hits barrier after 
time τ  or its value is less than barrier at time τ , it stops. 

Hence we may write corresponding forward Kolmogorov’s 
equation [11]: 

 

( ) ( ) ( )[ ]

( ) ( )[ ]tSptSb
S

tSptSa
St

tSp

m

m

,,
2

1

,,
,

2

2

2

∂

∂
+

+
∂

∂
−=

∂

∂

 (5) 

with initial condition: 

 ( ) ( )00, SSSp −= δ  (6) 
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where ( )tSp ,  is the occupation probability density (or transition 

density function) and ( )0SS −δ  is a Dirac delta function (distribution, 

generalized function or atomic measure) with support at point 0S .  

Because it is an equation with discontinuous coefficients,  
solution should be sought in the set of generalized functions. We are 
looking for solution in the following (distributional or generalized 
function) form: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )StSpSt

StSptSp

−+

−−

++

+−=

θδα

θ

,

,,
 (7) 

where: 

 ( )
�
�
	

>

≤
=−

01

00

Sfor

Sfor
Sθ  

( ) 0≥tα  - probability that process 0=tS  and integrable functions 

( ) 0, ≥± tSp  such that (normalization condition): 

 ( ) ( ) ( ) 1,,
0

0

=++ 


+∞

+

∞−

− dStSptdStSp α  (8) 

Unfortunately, we face the problem of the multiplication of 

distribution ( )tSp ,  and discontinuous functions ( )tSam ,  and ( )tSbm , . 

It is well known that in Schwartz’s distribution theory such operation 
is not allowed. In the literature there are many solutions to this 
problem [30], [31]. In this paper we use a measure theoretical 
generalization of the distribution theory [32]. If we want to multiply 
the discontinuous function and distribution we have to confine itself to 

functions ( )tSam ,  and ( )tSbm ,  with bounded variation [32]. In this 

case we obtain, for example: 

 ( ) ( ) 0=− SS δθ   (9) 

and 

 ( ) ( ) ( )SSS δδθ =+ . (10) 

Substituting (7) into (5) we obtain the following formula: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0"'    

,,

321 =+++

++− −+−−

StHStHStH

StSGStSG

δδδ

θθ
 (11) 
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where (dependence on ( )tS ,  was suppressed, dot and prime mean 

respectively time and space derivative): 

 

( ) ( ) ( )( )

( ) ( )( )τθ

τθ

−−+

+−−−−=

+

+−

tpb

tapptSG

1"
2

1

1',

2

�

 

 ( ) ( ) ( )"
2

1
', 2

pbapptSG +−−=+
�  

 ( ) ( ) ( ) ( )( )τθα −−= + tttbtH 1,0
2

1 2

3  

 
( ) ( ) ( ) ( )( )[

( ) ( )] ( ) ( ) ( )( )τθα

τθ

−−−+

+−−−=

++

+−

tttatptb

ttptbtH

1,0,0,0

1,0,0
2

1

2

2

2
 

 

( ) [ ] ( )[

[ ] ( ) ( )( )]
( ) ( ) ( )( )
( ) ( ) ( )ttpta

ttpta

ttpb

tpbtH

α

τθ

τθ

�−−

−−−+

+−−−

+=

+

+−

+−

+

,0,0

1,0,0

1,0'

,0'
2

1

2

2

1

 

Using following theorem [33]: 

If ( )xg  is a locally integrable function and ijβ  are constants, the 

equality: 

 ( ) ( ) ( ) 0
0 1

=−+��
= =

n

i

m

j

j

i

ij xxxg δβ  (12) 

holds iff: 

 
( )

�
�
	

===

=

mjni

xg

ij ,...,1;,...,00

0

β
 (13) 

we can rewrite equation (11) as follows: 
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( )
( )
( )
( )
( )�

�
�

�

��
�

�

	

=

=

=

=

=

+

−

0

0

0

0,

0,

3

2

1

tH

tH

tH

tSG

tSG

. (14) 

From ( ) 03 =tH (assuming diffusion coefficient ( ) 0,0 ≠tb ) we 

obtain: 

 ( ) ( )( ) 01 =−− + τθα tt . (15) 

Hence: 

 
( )
( )�

�
	

≥≥

<=

τα

τα

tift

tift

0

0
 (16) 

In fact, (15) does not mean that ( ) 0≥tα  for τ≥t , but we have to 

remember that ( )tα  is the probability of 0=tS .  

Similarly, from ( ) 02 =tH  we obtain: 

 
( ) ( )

( )�
�
	

≥=

<=

+

+−

τ

τ

tfortp

tfortptp

0,0

,0,0
 (17) 

Since we chose barrier level arbitrarily (at point 0=S ), from 

equality ( ) ( )tptp ,0,0 +− =  it is apparent that probability distribution 

function is continuous at points where diffusion coefficient is positive.  

Following equations arises from condition ( ) 01 =tH  (where we 

used (17)): 

 
( ) ( )

( ) ( ) ( )��

�
�
	

≥=

<=

+

+−

τα

τ

tforttptb

tfortptp

�,0',0
2

1
,0',0'

2  (18) 

From ( ) 0,0 =+ tp  and ( ) ( ) ( )ttptb α�=+ ,0',0
2

1 2 , one can also 

deduce that ( ) 0≥tα�  for τ≥t . Hence ( )tα  has to be greater than or 

equal to zero. 

The first two conditions, can be written as follows: 
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( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )�
�

�
�

	

+−=

+−=

+++

−−−

",,
2

1
',,,

",,
2

1
',,,

2

2

tSptSbtSptSatSp

tSptSbtSptSatSp

�

�
 (19) 

for τ<t , and 

         
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )��

�
�
	

+−=

===

+++

−−−

",,
2

1
',,,

,,0,

2 tSptSbtSptSatSp

SpconsttSptSp

�

� τ
 (20) 

for τ≥t .  

From the above conditions, we can infer that in case of τ<t , 

evolution of probability density function ( )tSp ,  satisfies the equation: 

 ( ) ( ) ( )( ) ( ) ( )( )tSptSbtSptSatSp ,,
2

1
',,, 2+−=�  (21) 

where ( ) ( ) ( ) ( ) ( )StSpStSptSp −+−− +−= θθ ,,,  is integrable function 

(has no distributional component ( ) ( )St δα ). It’s worth noting that 

the probability distribution function ( )tSp ,  is not defined at point 

0=S . Of course it is not a problem, because point 0=S  is not an 

atom of a measure ( )tSp ,  ( ( ) 0=tα , hence ( )tSp ,  is Lebesgue 

integrable and  there is no need for Lebesgue-Stielties integrability). 
Suppose, we’ve solved above equations,  following problems 

arise: how to interpret solutions, and above all, how to determine the 

probability 
[ ]

( ) �
�
��

�
� <−

∈
GMLtSSP

tt
'inf

,'
0

τ
 defining Generalized Maximum 

Loss (GML).  

For τ<t , the probability of 0<tS  equals to ( )

∞−

−

0

, dStSp . 

Similarly ( ) ( )

+∞

+=>
0

,0 dStSpSP t  and ( ) 00 ==tSP  (these 

probabilities relate to the both unmodified and modified stochastic 
dynamic). 

Since, the stopping region ( 0≤tS ) occurs at   time t  greater than 

or equal to τ , the probability of 0<tS  (only modified stochastic 
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dynamics case) equals to ( ) constdSSp =

∞−

−

0

,τ . Quantity ( )tα  is the 

probability of the following random event: 0=tS  for at least one 

τ≥t . Integral ( )

+∞

+

0

, dStSp  is the conditional probability of 

( )0:/0 >≥∀> tt StS τ  (in either modified and unmodified stochastic 

dynamics case).  
From the foregoing, one can conclude that, probability 

[ ]
( ) �

�
��

�
� ≥−

∈
GMLtSSP

tt
'inf

,'
0

τ
 is given by (for τ≥t ): 

       
[ ]

( ) ( ) ( )

∞−

−
∈

+=�
�
��

�
� ≥−

0

,'
0 ,'inf dSSptGMLtSSP

tt
τα

τ
 (22) 

 

 

3. Generalized Maximum Loss – geometric Brownian motion 
case. 

 
The considerations in the previous part of this paper were carried 

out for any stochastic dynamics, described by equation (3) (provided 
that there are solutions to that equation, see [11]). In this section, we 
consider the price of a financial instrument (equity) whose stochastic 
evolution is described by the stochastic differential equation [1]: 

 SdWSdtdS σµ +=  (23) 

where: 

const=µ - drift coefficient, 

const=σ  - volatility. 

Strong solution [11] is given by: 

 
tWt

t eSS
σσµ +�

�
�

�
�
�

−

=
2

2

1

0
 (24) 

where 
0S  is the initial equity price. 

Assume stopping barrier is fixed at point (price)  
bS . 
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The following transformation (monotonic): 

 
bS

S
x log=  (25) 

defines new stochastic process (using Ito theorem [11]): 

 dWdtdx σσµ +�
�
�

�
�
�

−= 2

2

1
 (26) 

whose strong solution is given by: 

 
tt Wtxx σσµ +�

�
�

�
�
�

−+= 2

0
2

1
 (27) 

where initial value 
bS

S
x 0

0 log= . 

It is clear that: 

 
[ ]

[ ] [ ]
�
�
��

�
� ≤−=�

�
��

�
� −<−=

=�
�
��

�
� <−

∈∈

∈

bt
tt

bt
tt

t
tt

SSPSSSSP

GMLSSP

'
,'

0'
,'

0

'
,'

0

inf1inf

inf

ττ

τ
 (28) 

and  

 
[ ] [ ]

�
�
��

�
� ≤=�

�
��

�
� ≤
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0infinf '

,'
'

,'
t

tt
bt

tt
xPSSP

ττ
 (29) 

Hence, one can use results from previous part and focus attention 

on the process tx . 

Forward Kolmogorov equation, corresponding to equation (26) 
has the form (unmodified stochastic dynamics): 

 

( ) ( )

( )[ ]txp
x

txp
xt

txp

,
2

1

,
2

1,

2

2

2

2

σ

σµ

∂

∂
+

+�
�

�
�
�

�
�
�
�

�
�
�

−
∂

∂
−=

∂

∂

 (30) 

with initial condition ( ) ( )00, xxxp −= δ . 

Using a modification technique, described in Part 2 and after 
some algebra, one obtain for τ<t : 
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( ) ( )

( )txp
x

txp
xt

txp

,
2

1

,
2
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2

2
2

2

∂

∂
+

+
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∂
�
�
�
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�
�

−−=
∂

∂

σ

σµ

 (31) 

where ( ) ( ) ( ) ( ) ( )xtxpxtxptxp −+−− +−= θθ ,,,  with initial condition 

( ) ( )00, xxxp −= δ . 

Well known solution of the equation (31) has the form: 

 ( ) t

txx

e
t

txp
2

2
2

0

2

2

1

2

1
, σ

σµ

σπ

��
�

�
��
�

�
�
�
�
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�
�

−−−
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=  (32) 

For τ≥t , one can obtain: 
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τ
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σ

τσµ
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xexp
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txptxptxp

exp

t

xx
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�

�

 (33) 

In order to simplify calculations, we can make a translation of 

time τ−= tt1  and instead of the initial condition 

( ) ( )xexp

xx

−

��
�

�
��
�

�
�
�
�

�
�
�

−−−

−

+ = θ
σπτ

τ τσ

τσµ

2

2
2

0

2

2

1

2

1
,  

assume for the moment new initial value condition 

( ) ( )11 0, xxtxp −==+ δ  where 1x  is chosen arbitrarily but greater than 

zero (technique similar to conditioning or Green’s function method). 
Taking the Laplace transform of the 
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2

1
2
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2

1
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2

1
, txptxptxp +++ +�

�
�

�
�
�

−−= σσµ�  

with respect to time, one can obtain: 
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 (34) 

where ( ) ( )

+∞

+
−

+ =
0

11,,ˆ 1 dttxpesxp
st . 

Next, taking the Laplace transform of the (34) with respect to x : 
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 (35) 

where ( ) ( )

+∞

+
−

+ =
0

,,
~
ˆ dxsxpesup

ux . 

Solving (35) with respect to ( )sup ,
~
ˆ

+ , we can write: 

 ( ) ( )
222

2

1

2

1
,

~
ˆ

1
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sse
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The denumerator has two roots: 
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Because the image of the required solution must be an analytic 
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function for all values u  and s  in the region defined by the 

inequalities 1Re cu > , 2Re cs >  (where 1c  and 2c  are two suitably 

chosen constants) [34], the numerator of the right side of (36) must be 
equal zero when: 
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In other words: 
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Hence, we can write: 
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and 
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In order to determine ( )1, txp+  we have to calculate inverse 

transforms of the (42). However, from the Generalized Maximum 
Loss point of view, we do not have to invert (42), because 

determination of probability 
[ ]

�
�
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�
� ≤

∈
0inf '

,'
t

tt
xP

τ
 requires only knowledge 

of ( )tα  and ( )τ,xp− . Hence, we still need ( )tα  only. Straightforward 

calculations gives [35]: 
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Above formula can rewritten as follows: 
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where ( )xN  is a cumulative distribution function of the standard 

normal distribution. 
Since, the expression (44) is the conditional probability 
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, we have to return to original initial 

condition ( ) ( )xexp t

xx

−

��
�

�
��
�

�
�
�
�

�
�
�

−−−

−

+ = θ
σπτ

τ σ

τσµ

2

2
2

0

2

2

1

2

1
, : 

( )
( )

( )

( )

1
2

2

1

2

11
2

0

2

1

2

2

2
01

12

2

1

2

1

2

1

dxe

t

tx

Ne

t

tx

Nt

xx

x

τσ

τσµ

σ

µ

σπτ

τσ

τσµ

τσ

τσµ

α

��
�

�
��
�

�
�
�
�

�
�
�

−−−

−

Π

ΠΠ
�
�
�

�
�
�
�

�
+−

∞+

Π

ΠΠ

⋅

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−

−�
�
�

�
�
�

−+−

+

+

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−

−�
�
�

�
�
�

−−−

=

Π

Π




 (45) 

Hence, the probability of Generalized Maximum Loss be greater 

than or equal to bSS −0  can be expressed as follows: 

 ( ) ( ) ( )

∞−

−+=−≥
0

0 , dSSptSSGMLP b τα  (46) 
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where ( )tα  and ( )τ,Sp−  are given, respectively, by (45) and (33).  

It’s worth noting, that, t

xx

e
2

2
2
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2

2

1

2

1
σ

τσµ

σπτ

��
�

�
��
�

�
�
�
�

�
�
�

−−−

−

 converges in 

distributional sense to ( )0xx −δ  as +→ 0τ . Hence, Generalized 

Maximal Loss converges to Maximal Loss. 
Formula (46) can be used, for example, in risk quantification and 

portfolio optimization. Technique used to modifying of stochastic 
differential equation, may also be applied in processes modulated by 
an additional Markov switching process [36]. 
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La funzione di distribuzione di una corda

in un trapezio rettangolo

Andrei Duma e Sebastiano Rizzo

0. Introduzione

Sia RD il reticolo di Buffon formato da rette parallele a distanza D l’una dall’altra. Nei
lavori di Conserva, Duma, Pettineo, Rizzo e Stoka pubblicate nel 2007 e 2008 sono state
calcolate le probabilità che un poligono convesso P con diametro minore di D (quindi P
è ”piccolo” rispetto a RD) intersechi su una delle rette di RD un segmento di lunghezza
maggiore o uguale ad un numero s, 0 ≤ s ≤ diam (P ). Si può calcolare in maniera analoga
la stessa probabilità condizionata se P è un poligono regolare convesso con un numero
arbitrario di lati. Se P è un trapezio, per calcolare tale probabilità, occorre considerare
un gran numero di casi poiché tra le dimensioni dei lati, delle diagonali e delle altezze
sono possibili diverse relazioni. Per tale motivo in tale lavoro si è scelto di considerare un
trapezio rettangolo.

1. Il problema

Ci proponiamo di calcolare la probabilità p(s) che il trapezio rettangolo T (vedi fig. 1)
con diam (T ) ≤ D intersechi un segmento di lunghezza maggiore o uguale al numero
s, 0 ≤ s ≤ diam (T ), su una retta di RD.

b

b

α

b

a

b

h cd

Fig. 1: Il trapezio T

Senza ledere la generalità sia b ≤ a dunque 0 < α ≤ π
2
, h ≤ c, b ≤ d ≤ min(a,

√
b2 + h2),

≤ max(a,
√

b2 + h2) ≤
√

a2 + h2. Non esistono in generale altre relazioni tra a, b, c, d, h,√
b2 + h2 e

√
a2 + h2. Occorre considerare in maniera separata i due casi h ≤ b (e le

situazioni I, II,. . . , VIII) e h > b (e le situazioni 1◦, 2◦, . . . , 16◦).

I h ≤ c ≤ b ≤ d ≤
√

b2 + h2 ≤ a <
√

a2 + h2,

II h ≤ b ≤ d ≤ c ≤
√

b2 + h2 ≤ a <
√

a2 + h2,

III h ≤ b ≤ c ≤ d ≤
√

b2 + h2 ≤ a <
√

a2 + h2,

IV h ≤ c ≤ b ≤ d ≤ a ≤
√

b2 + h2 ≤
√

a2 + h2,

V h ≤ b ≤ d ≤ c ≤ a ≤
√

b2 + h2 ≤
√

a2 + h2,

VI h ≤ b ≤ c ≤ d ≤ a ≤
√

b2 + h2 ≤
√

a2 + h2,

1

LA FUNZIONE DI DISTRIBUZIONE DI UNA CORDA IN UN TRAPEZIO RETTANGOLO 147

La funzione di distribuzione di una corda

in un trapezio rettangolo

Andrei Duma e Sebastiano Rizzo

0. Introduzione

Sia RD il reticolo di Buffon formato da rette parallele a distanza D l’una dall’altra. Nei
lavori di Conserva, Duma, Pettineo, Rizzo e Stoka pubblicate nel 2007 e 2008 sono state
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VII h ≤ b ≤ d ≤
√

b2 + h2 ≤ c ≤ a <
√

a2 + h2,

VIII h ≤ b ≤ d ≤ a ≤ c ≤
√

b2 + h2 ≤
√

a2 + h2,

e

1◦ b < h ≤ d ≤ c ≤
√

b2 + h2 ≤ a <
√

a2 + h2,

2◦ b < h ≤ c ≤ d ≤
√

b2 + h2 ≤ a <
√

a2 + h2,

3◦ b < h ≤ d ≤ c ≤ a ≤
√

b2 + h2 <
√

a2 + h2,

4◦ b < h ≤ c ≤ d ≤ a ≤
√

b2 + h2 <
√

a2 + h2,

5◦ b < h ≤ d ≤ a ≤ c ≤
√

b2 + h2 <
√

a2 + h2,

6◦ b < h ≤ d ≤ a ≤
√

b2 + h2 ≤ c <
√

a2 + h2,

7◦ b < h ≤ d ≤
√

b2 + h2 ≤ c ≤ a <
√

a2 + h2,

8◦ b < h ≤ d ≤
√

b2 + h2 ≤ a ≤ c <
√

a2 + h2,

9◦ b < d ≤ h ≤ a ≤ c ≤
√

b2 + h2 <
√

a2 + h2,

10◦ b < d ≤ h ≤ a ≤
√

b2 + h2 ≤ c <
√

a2 + h2,

11◦ b < d < a ≤ h <
√

b2 + h2 ≤ c <
√

a2 + h2,

12◦ b < d ≤ h <
√

b2 + h2 ≤ a ≤ c <
√

a2 + h2,

13◦ b < d < a ≤ h < c ≤
√

b2 + h2 <
√

a2 + h2,

14◦ b < d ≤ h <
√

b2 + h2 ≤ c ≤ a <
√

a2 + h2,

15◦ b < d ≤ h ≤ c ≤ a <
√

b2 + h2 <
√

a2 + h2,

16◦ b < d ≤ a ≤ c ≤ h <
√

b2 + h2 <
√

a2 + h2.

Per ogni situazione dobbiamo considerare 7 sottocasi risultanti dalle relazioni tra s e le
dimensioni a, b, c, d, h,

√
b2 + h2 e

√
a2 + h2. Per esempio nel caso I h ≤ c ≤ b ≤ d ≤√

b2 + h2 ≤ a <
√

a2 + h2 si hanno i sottocasi s ≤ h, h ≤ s ≤ c, c ≤ s ≤ b, . . . , a ≤ s ≤√
a2 + h2.

Ci sono più di 100 casi diversi, ma per fortuna non sempre occorre fare dei calcoli separati
perché alcuni sottocasi si possono calcolare simultaneamente; ciò accade per esempio per i
sottocasi ”estremi” s ≤ min(b, d) e max(a, c,

√
b2 + 2) ≤ s ≤

√
a2 + h2. Faremo i calcoli

di p(s) per diversi sottocasi; nei sottocasi rimanenti i calcoli si effettuano in maniera
analoga.
Indichiamo con ϕ l’angolo tra la direzione delle rette di RD e il lato orientato a, come
nella figura 2.

2
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s

s

xs(ϕ)

ϕ

α

α − ϕϕ

Fig. 2: La definizione di ϕ e xs(ϕ)

Se ϕ varia nell’intervallo [0, π[ si ottengono esattamente una volta tutte le situazioni pos-
sibili tra T e RD. Sia ϕ ∈ [0, π[ e indichiamo con xs(ϕ) la distanza tra due segmenti
paralleli di lunghezza s secanti T (come in fig. 2). Secondo una formula di Stoka si ha:

(1) p(s) =

π
∫

0

xs(ϕ)dϕ

π
∫

0

Ddϕ

=
1

πD

π
∫

0

xs(ϕ)dϕ.

Il nostro lavoro si riduce quindi alla determinazione della funzione xs(ϕ) e al calcolo
dell’integrale di xs(ϕ) tra 0 e π.

2. Il sottocaso s ≤ min(b,h)

La funzione xs(ϕ) assume diverse espressioni a seconda che ϕ vari negli intervalli [0, α], [α, π
2
]

e [π
2
, π[. Se ϕ ∈ [0, α] risulta

(2) xs(ϕ) = h cos ϕ + b sin ϕ +
s

2
(−2 sin 2ϕ − cot α cos 2ϕ + cot α),

e quindi

(2’)

α
∫

0

xs(ϕ)dϕ = h sin α + b(1 − cos α) +
s

4
(2 cos 2α − 2 − cot α sin 2α + 2α cot α).

Se ϕ ∈ [α, π
2
] risulta dalla figura 3

(3) xs(ϕ) = a sin ϕ − s

2
(cot α − cot α cos 2ϕ)

e quindi

(3’)

π

2
∫

α

xs(ϕ)dϕ = a cos α − s

4
((π − 2α) cot α + sin 2α cot α).

3
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s

s

xs(ϕ)

ϕ

Fig. 3: α ≤ ϕ < π
2

Se ϕ ∈ [π
2
, π[ risulta dalla figura 4

s

s

xs(ϕ)

ϕ −

π

2

α

ϕ −

π

2

b

a

h

c

Fig. 4: π
2
≤ ϕ < π

(4) xs(ϕ) = a sin ϕ − h cos ϕ + s sin 2ϕ − s

2
cot α +

s

2
cot α cos 2ϕ

e quindi

(4’)

π
∫

π

2

xs(ϕ)dϕ = a + h − s

4
(4 + π cot α).

4
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In conclusione in questo sottocaso si ha:

π∫

0

xs(ϕ)dϕ = a(1+cos α)+b(1−cos α)+h(1+sin α)−s

2
[3 − cos 2α + (π − 2α + sin 2α) cot α] ,

e quindi utilizzando la formula (1):

(5) p(s) =
a(1 + cos α) + b(1 − cos α) + h(1 + sin α) − s

2
[3 − cos 2α + (π − 2α + sin 2α) cot α]

πD
.

In particolare se s = 0 si ritrova la formula ben nota

p(0) =
a(1 + cos α) + b(1 − cos α) + h(1 + sin α)

πD
=

a + b + c + h

πD
.

3. Il sottocaso h ≤ s ≤ min(b, c,d)

Questo sottocaso è comune ai casi I e IV. Dobbiamo considerare l’angolo ϕ0 ∈ [α, π
2
]

univocamente determinato dalla relazione s sin ϕ0 = h; per ϕ ∈ ]ϕ0, π−ϕ0[ si ha s sin ϕ > h
e dunque xs(ϕ) = 0. Altrimenti si può utilizzare il sottocaso precedente, cioè (2) e (2’)

per ϕ ∈ [0, α], (3) per calcolare
ϕ0∫
α

xs(ϕ)dϕ e (4) per calcolare
π∫

π−ϕ0

xs(ϕ)dϕ. Con

(3”)

ϕ0∫

α

xs(ϕ)dϕ = a(cos α − cos α0) +
s

4
(2α − 2ϕ0 + sin 2ϕ0 − sin 2α) cot α .

e

(4”)

π∫

π−ϕ0

xs(ϕ)dϕ = a(1 − cos ϕ0) = +h sin ϕ0 +
s

4
(2 cos 2ϕ0 − 2 + cot α sin 2ϕ0

−2ϕ0 cot α)

abbiamo
π∫

0

xs(ϕ)dϕ = a(1 − 2 cos ϕ0 + cos α) + b(1 − cos α) + h(sin α + sin ϕ0)

+
s

2
(−2 + cos 2α + cos 2ϕ0 + (2α − sin 2α − 2ϕ0 + sin 2ϕ0) cot α)

e quindi si ottiene:

(7) p(s) =
1

πD

[
a(1 − 2 cos ϕ0 + cos α) + b(1 − cos α) + h(sin α + sin ϕ0)

+
s

2
(−2 + cos 2α + cos 2ϕ0 + (2α − sin 2α − 2ϕ0 + sin 2ϕ0) cot α)

]
.

Si osservi (e tale osservazione serve anche come prova della correttezza dei calcoli) che se
s = h si ha ϕ0 = π

2
e quindi la formula (7) coincide con la (5).

5
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4. Il sottocaso h ≤ c ≤ s ≤ b

Questo sottocaso appare nei casi I e IV. Anche qui utilizziamo l’angolo ϕ0 definito da
s sin ϕ0 = h, ma questa volta si ha ϕ0 ∈ [0, α]. Se ϕ ∈ [0, ϕ0] e ϕ ∈ [π−ϕ0, π] l’espressione
di xs(ϕ) è data da (2) rispettivamente da (4); con:

ϕ0
∫

0

xs(ϕ)dϕ = b(1 − cos ϕ0) + h sin ϕ0 +
s

4
(2 cos 2ϕ0 − 2 + 2ϕ0 cot α − cot α sin 2ϕ0)

e con (4”) abbiamo

(8)

π
∫

0

xs(ϕ)dϕ = (a + b)(1 − cos ϕ0) + 2h sin ϕ0 − s(1 − cos 2ϕ0)

ne segue

(9) p(s) =
1

πD

[

(a + b)(1 − cos ϕ0) + 2h sin ϕ0 − s(1 − cos2ϕ0)

]

.

Se s = c, si ha ϕ0 = α e le formule (7) e (9) forniscono lo stesso risultato

p(c) =
1

πD
[(a + b)(1 − cos α) + 2h sin α − s(1 − cos 2α)] .

5. Il sottocaso max(h, c,b) ≤ s ≤ d

Questo sottocaso serve per i casi I, III, IV, VI, 2◦ e 4◦. Stavolta oltre all’angolo ϕ0

definito come precedentemente, occorre considerare gli angoli ϕ1 e ϕ2 definiti (vedere
anche la figura 5) da sin(α − ϕ1) = b sin α e s cos ϕ2 = b.

ϕ1 ϕ2

ϕ0

h

b

c

a

Fig. 5: Gli angoli ϕ0, ϕ1 e ϕ2

Risulta ϕ1 ≤ ϕ2 ≤ ϕ0 ≤ α. La distanza xs(ϕ) tra le due secanti di lunghezza s si calcola
per ϕ ∈ [ϕ1, ϕ2] e ϕ ∈ [π − ϕ0, π − ϕ2] con la formula (2) rispettivamente (4). Quindi:

(2”)

ϕ0
∫

ϕ1

xs(ϕ)dϕ = h(sin ϕ0 − sin ϕ1) + b(cos ϕ1 − cos ϕ0) +
s

4
(2 cos 2ϕ0−

2 cos 2ϕ1 + (sin 2ϕ1 − sin 2ϕ0 + 2ϕ0 − 2ϕ1) cot α) ,

6
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(4”’)

π−ϕ2
∫

π−ϕ0

xs(ϕ)dϕ = a(cos ϕ2 − cos ϕ0) + h(sin ϕ0 − sin ϕ2) +
s

4
(2 cos 2ϕ0−

2 cos 2ϕ2 + (2(ϕ2 − ϕ0) + sin 2ϕ0 − sin 2ϕ2) cot α) .

Quando ϕ ∈ [0, ϕ1] si ottiene (vedere anche la figura 6):

s

s

xs(ϕ)

α

Fig 6: s > b e ϕ piccolo

(10) xs(ϕ) = b tan α cos ϕ + h cos ϕ − s

2
(1 + cos 2ϕ) tan α

e quindi

(10’)

ϕ1
∫

0

xs(ϕ)dϕ = b tan α sin ϕ1 + h sin ϕ1 −
s

4
(2ϕ1 + sin 2ϕ1) tan α.

L’espressione di xs(ϕ) quando ϕ varia nell’intervallo [π − ϕ2, π] (vedere anche la fig. 7)

s

s

xs(ϕ)

ϕ −

π

2

Fig. 7: s > b e ϕ vicino a π

è

(11) xs(ϕ) = a sin ϕ − b tan α cos ϕ − h cos ϕ + s sin 2ϕ − s

sin 2α
+ s cot 2α cos 2ϕ.

Da cui

(11’)

π
∫

π−ϕ2

xs(ϕ)dϕ = a(1 − cos ϕ2) + b tan α sin ϕ2 + h sin ϕ2

− sϕ2

sin 2α
+

s

2
cot 2α sin 2ϕ2 −

s

2
(1 − cos 2ϕ2) ,

7

LA FUNZIONE DI DISTRIBUZIONE DI UNA CORDA IN UN TRAPEZIO RETTANGOLO 153



e quindi
π

∫

0

xs(ϕ)dϕ = a(1 − cos ϕ0) + b(tan α(sin ϕ1 + sin ϕ2) + cos ϕ1 − cos ϕ0)

+2h sin ϕ0 +
s

2
(−1 − cos 2ϕ1 + 2 cos 2ϕ0 + cot 2α(sin 2ϕ1 + sin 2ϕ2)

−ϕ1 + ϕ2

sin 2α
+ (ϕ2 −

1

2
sin 2ϕ2) cot α) ,

(12) p(s) =
1

πD
[a(1 − cos ϕ0) + b(tan α(sin ϕ1 + sin ϕ2) + cos ϕ1 − cos ϕ0)

+2h sin ϕ0 +
s

2
(−1 − cos 2ϕ1 + 2 cos 2ϕ0 + cot 2α(sin 2ϕ1 + sin 2ϕ2)

−2
ϕ1 + ϕ2

sin 2α
+ (ϕ2 −

1

2
sin 2ϕ2) cot α)] .

Se h ≤ c ≤ b = s ≤ d, allora ϕ1 = ϕ2 = 0 e le formule (9) e (12) danno:

p(b) =
a(1 − cos ϕ0) + b(cos 2ϕ0 − cos ϕ0) + 2h sin ϕ0

πD
.

6. Il sottocaso max(h, c,d) ≤ s ≤ min(a,
√

b2 + h2)

Questa situazione si presenta nei casi I, II, III, IV, V, VI, 1◦, 2◦, 3◦, 4◦, 9◦, 10◦, 15◦.
Consideriamo gli angoli ϕ0, ϕ1 e ϕ2 definiti come precedentemente ed inoltre l’angolo
ϕ3 ∈ [0, π

2
− α] definito da s sin(ϕ3 + α) = d.

ϕ1 ϕ2

αϕ0π−2α−ϕ3
ϕ3

h

b

c

a

Fig. 8: ϕ3 e π − 2α − ϕ3

In questo caso (vedere anche la Fig. 8) risulta che se ϕ ∈ ]ϕ0, π − ϕ0[∪ [2α + ϕ3, π − ϕ3[
allora xs(ϕ) = 0. Negli intervalli [0, ϕ1[ , [ϕ1, ϕ0] , [π − ϕ0, π − ϕ2[ , [π − ϕ2, 2α + ϕ3] e
[π − ϕ3, π[ la distanza xs(ϕ) è data da (10), (2), (4), (11) e ancora (11). Con (10’), (2”),
(4”’) e con

8
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(11”)

2α+ϕ3
∫

π−ϕ2

xs(ϕ)dϕ = a(− cos(2α + ϕ3) − cos ϕ2) + b tan α(sin ϕ2 − sin(2α + ϕ3)),

+h(sin ϕ2 − sin(2α + ϕ3)) −
s

2
(cos(4α + 2ϕ3) − cos 2ϕ2)−

s

sin 2α
(2α + ϕ2 + ϕ3 − π) +

s

2
cot α(sin(4α + 2ϕ3) + sin 2ϕ2)

nonché

(11”’)

π
∫

π−ϕ3

xs(ϕ)dϕ = a(1 − cos ϕ3) + b tan α sin ϕ3 + h sin ϕ3

−s

2
(1 − cos 2ϕ3) −

s

sin 2α
ϕ3 +

s

2
cot 2α sin 2ϕ3

si ottiene
π

∫

0

xs(ϕ)dϕ = a(1 − cos ϕ0 − cos ϕ3 − cos(2α + ϕ3)) + b(cos ϕ1 − cos ϕ0+

+ tan α(sin ϕ1 + sin ϕ2 + sin ϕ3 − sin(2α + ϕ3))) + h(2 sin ϕ0 − sin(2α + ϕ3) + sin ϕ3)+

+
s

2
(−1 − cos 2ϕ1 + 2 cos 2ϕ0 + cos 2ϕ3 − cos(4α + 2ϕ3) −

2

sin 2α
(ϕ1 + ϕ2 + 2α + 2ϕ3 − π)

+(sin 2ϕ1 + sin 2ϕ2 + sin 2ϕ3 + sin(4α + 2ϕ3)) cot 2α + (ϕ2 −
1

2
sin 2ϕ2) cot α) =:

=: A(ϕ0, ϕ1, ϕ2, ϕ3; s) ,

e quindi

(13) p(s) =
A(ϕ0, ϕ1, ϕ2, ϕ3; s)

πD
.

Se max(h, c, d) = d = s allora si ha ϕ3 +α = π
2

e le formule (12) e (13) forniscono lo stesso
risultato di p(d).

7. Il sottocaso max(c,
√

b2 + h2) ≤ s ≤ a

Questo sottocaso riguarda i casi I, II, III, IV, 1◦, 2◦, 7◦, 14◦. Poiché s ≥ max(c,
√

b2 + h2)
si ha ϕ0 ≤ π − 2α − ϕ3 e dunque 2α + ϕ3 ≤ π − ϕ0; ne segue che se ϕ ∈ ]ϕ0, π − ϕ3[
allora xs(ϕ) = 0. Negli intervalli [0, ϕ1[ , [ϕ1, ϕ0[ e [π −ϕ3, π[ si calcola xs(ϕ) utilizzando
rispettivamente (10), (2), (11). Da (10’), (2”) e (11”’) risulta:

π
∫

0

xs(ϕ)dϕ = a(1 − cos ϕ3) + b((sin ϕ1 + sin ϕ3) tan α + cos ϕ1 − cos ϕ0)+

h(sin ϕ0 + sin ϕ3) +
s

2
(−1 − cos 2ϕ1 + cos 2ϕ0 + cos 2ϕ3 −

2

sin 2α
(ϕ1 + ϕ3)+

(sin 2ϕ1 + sin 2ϕ3) cot 2α + (ϕ0 −
1

2
sin 2ϕ0) cot α) =: B(ϕ0, ϕ1, ϕ3; s)

9
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e dalla (1) si ottiene:

(14) p(s) =
B(ϕ0, ϕ1, ϕ3; s)

πD
.

Se c ≤
√

b2 + h2 = s ≤ a, allora ϕ0 = ϕ2 = π−2α−ϕ3 e le formule (13) e (14) forniscono
lo stesso risultato.

8. Il sottocaso max(c,
√

b2 + h2) ≤ a ≤ s ≤
√

a2 + h2

Questo sottocaso riguarda i casi I, II, III, VII, 1◦, 2◦, 7◦, 15◦. Sia ϕ4 ∈]0, α] l’angolo
definito da s cos ϕ4 = a; ne segue ϕ4 ≤ ϕ1 ≤ ϕ0 ≤ α e xs(ϕ) = 0 se ϕ ∈ [0, ϕ4[∪ ]ϕ0, π].
Se ϕ ∈ [ϕ4, ϕ1] vale (10) e dunque:

(10”)

ϕ1
∫

ϕ4

xs(ϕ)dϕ = b tan α(sin ϕ1 − sin ϕ4) + h(sin ϕ1 − sin ϕ4)

−s

2
(ϕ1 − ϕ4 +

1

2
(sin 2ϕ1 − sin 2ϕ4)) tan α .

Utilizzando (2”) risulta

π
∫

0

xs(ϕ)dϕ = b(cos ϕ1 − cos ϕ0 + (sin ϕ1 − sin ϕ4) tan α)+

h(sin ϕ0 − sin ϕ4) +
s

2
(cos 2ϕ0 − cos 2ϕ1 −

2ϕ1

sin 2α
+ sin 2ϕ1 cot 2α

+(ϕ4 +
1

2
sin 2ϕ4) tan α − (ϕ0 −

1

2
sin 2ϕ0) cot α) =: C(ϕ0, ϕ1, ϕ4; s)

e da cui:

(15) p(s) =
C(ϕ0, ϕ1, ϕ4; s)

πD
.

Nel caso particolare max(c,
√

b2 + h2) ≤ a = s, si ha ϕ3 = ϕ4 = 0 e le formule (14) e (15)
forniscono la stessa probabilità p(a). Se

√
a2 + h2 = s, risulta ϕ0 = ϕ1 = ϕ4 = α1 (dove

α1 = arctan(h/a)), C(α1, α1, α1;
√

a2 + h2) = 0 e di conseguenza p(
√

a2 + h2) = 0.

9. Il sottocaso max(b,h) ≤ s ≤ min(c,d)

Questa situazione si presenta nei casi II, III, V, VI, VII, VIII, 1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦.
Per queste relazioni tra b, h, s, c e d si ha ϕ1 ≤ ϕ2 ≤ α ≤ ϕ0 e xs(ϕ) = 0 se ϕ ∈ ]ϕ0, π−ϕ0[.
La distanza xs(ϕ) nei seguenti intervalli [0, ϕ1[ , [ϕ1, α[ , [α, ϕ0] , [π−ϕ0, π−ϕ2[ e [π−ϕ2, π[
ha l’espressione data rispettivamente da (10), (2), (3), (4) e (11) e quindi l’integrale di
xs(ϕ) su tali intervalli é fornito rispettivamente da (10’), (2”’), (3”), (4”’) e (11’) con

10
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(2”’)

α
∫

ϕ1

xs(ϕ)dϕ = b(cos ϕ1 − cos α) + h(sin α − sin ϕ1)

+
s

2
(cos 2α − cos 2ϕ1 −

1

2
(sin 2α − sin 2ϕ1) cot α + (α − ϕ1) cot α) .

Tenendo conto delle formule (10’), (2”’), (3”), (4”’) e (11’) abbiamo
π

∫

0

xs(ϕ)dϕ = a(1 + cos α − 2 cos ϕ0) + b(cos ϕ1 − cos α + (sin ϕ1 + sin ϕ2) tan α)

+h(sin α + sin ϕ0) −
s

2
(1 + cos 2ϕ1 − (cos 2α + cos 2ϕ0) − (sin 2ϕ1 + sin ϕ2) cot 2α

+2
ϕ1 + ϕ2

sin 2α
+ (

1

2
sin 2α − ϕ2) cot α + (ϕ0 − α) cot α =: D(ϕ0, ϕ1, ϕ2; s)

e cos̀ı la probabilità cercata è:

(16) p(s) =
D(ϕ0, ϕ1, ϕ2; s)

πD
.

Si osservi la concordanza delle formule (12) e (16) nel caso max(b, h) ≤ s = c ≤ d (e
dunque ϕ0 = α.

10. Il sottocaso max(a, c) ≤ s ≤
√

b2 + h2

Utilizziamo questo sottocaso nei casi IV, V, VI, VIII, 3◦, 4◦, 5◦, 9◦ e 13◦ Sia ϕ5 l’angolo
definito da s sin(ϕ5 + α) = a sin α. Risulta (vedere anche la fig. 9) ϕ5 ≤ ϕ2 ≤ ϕ0 e
ϕ4 ≤ ϕ1 ≤ α.

ϕ1 ϕ2

π − α

αϕ0ϕ4ϕ0ϕ0 ϕ5 ϕ0

Fig. 9: ϕ5 ≤ ϕ2 ≤ ϕ0, ϕ4 ≤ ϕ1 ≤ ϕ0 ≤ α

Questa volta xs(ϕ) è zero su [0, ϕ4[∪ ]ϕ0, π−ϕ0[∪]π−ϕ5, π], mentre su [ϕ4, ϕ1[ , [ϕ1, ϕ0[ ,
[π − ϕ0, π − ϕ2[ e [π − ϕ2, π − ϕ5] l’integrale di xs(ϕ) si calcola con (10”), (2”), (4”’) e
(11IV) dove

11
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(11(IV))

π−ϕ5
∫

π−ϕ2

xs(ϕ)dϕ = a(cos ϕ5 − cos ϕ2) + b(sin ϕ2 − sin ϕ5) tan α

+h(sin ϕ2 − sin ϕ5) −
s

sin 2α
(ϕ2 − ϕ5) +

s

2
(sin 2ϕ2 − sin 2ϕ5 + cos 2ϕ2

− cos 2ϕ5) cot 2α .

Denotiamo con E(ϕ0, ϕ1, ϕ2, ϕ4, ϕ5; s) l’integrale di xs su [0, π], cioè

E(ϕ0, ϕ1, ϕ2, ϕ4, ϕ5; s) = a(cos ϕ5 − cos ϕ0) + b((sin ϕ1 + sin ϕ2 − sin ϕ4 − sin ϕ5) tan α

+ cos ϕ1 − cos ϕ0) + h(2 sin ϕ0 − sin ϕ4 − sin ϕ5) −
s

2
(cos 2ϕ1 + cos 2ϕ2 − 2 cos 2ϕ0

+
2(ϕ1 + ϕ2 − ϕ5)

sin 2α
+ (sin 2ϕ5 − sin 2ϕ2 + cos 2ϕ5 − cos 2ϕ2 − sin 2ϕ1) cot 2α

−(ϕ4 +
1

2
sin 2ϕ4) tan α + (−ϕ2 +

1

2
sin 2ϕ2) cot α) .

In questo sottocaso risulta

(17) p(s) =
E(ϕ0, ϕ1, ϕ2, ϕ4, ϕ5; s)

πD
.

Nel caso particolare c ≤ a = s =
√

b2 + h2 si ha ϕ4 = 0 e ϕ5 = ϕ2 = ϕ0 e quindi si osservi
come, in tal caso le formule (15) e (17) coincidono.

11. Il sottocaso b ≤ s ≤ min(c,d,h)

Questo sottocaso si presenta in tutti i casi 1◦, 2◦, . . . , 16◦. Stavolta non esiste alcun inter-
vallo aperto in cui xs(ϕ) è zero. L’espressione di xs(ϕ) su [0, ϕ1[ , [ϕ1, α[ , [α , π

2
[ , [π

2
, π−ϕ2[

e [π − ϕ2, π[ è data rispettivamente da (10), (2), (3), (4) e (11). Utilizziamo gli integrali
(10’), (2”’), (3’), (4IV) e (11’) dove

(4IV)

π−ϕ2
∫

π

2

xs(ϕ)dϕ = a cos ϕ2 +h(1− sin ϕ2)−
s

2
(1+cos 2ϕ2 +(

π

2
−ϕ2 +

1

2
sin 2ϕ2) cot α)

per ottenere:

π
∫

0

xs(ϕ)dϕ = a(1 + cos α) + b(cos ϕ1 − cos α + (sin ϕ1 + sin ϕ2) tan α)

+h(1 + sin α) − s

2
(2 +

2(ϕ1 + ϕ2)

sin 2α
+ cos 2ϕ1 − cos 2α + (sin 2α + π − 2α − ϕ2

+
1

2
sin 2ϕ2) cot α − (sin 2ϕ1 + sin 2ϕ2) cot 2α) =: F (ϕ1, ϕ2; s) .

Ne segue:

12
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(18) p(s) =
F (ϕ1, ϕ2; s)

πD
.

Se b = h = s, allora ϕ1 = ϕ2 = 0 e la formula (18) si riduce alla formula (5).

12. Considerazione degli autori e riassunto

Sono stati considerati finora nove sottocasi che forniscono soluzioni complete per i casi I,
II, III, VI e 1◦, 2◦, 3◦ e 4◦. Ci proponiamo di completare i casi restanti in un successivo
lavoro già in fase di stesura.

13. La distribuzione della corda in T

La distribuzione della corda in T è la funzione F che associa ad ogni numero s, 0 ≤ s ≤√
a2 + h2 la probabilità che una retta che taglia T determina in T una corda di lunghezza

minore o uguale a s.
Consideriamo un reticolo RD, dove D è un numero arbitrario D >

√
a2 + h2. Allora si

ha:

(19) F (s) = 1 − p(s)

p(0)
= 1 − p(s) · πD

a + b + c + h
.

Se s ≤ min(b, h), allora da (5) segue:

(20) F (s) =
s

2
· 3 − cos 2α + (π − 2α + sin 2α) cot α

a + b + c + h
.

In particolare per a = b (cioè α = π
2
) si ottiene il risultato già noto: F (s) = s

a+b
.

La densità f della distribuzione della corda in T , cioè f = F ′, è costante per s ≤ min(b, h).
Se s > min(b, h) nella formula di p(s) appaiono gli angoli ϕ0, ϕ1, ..., ϕ5 che sono dipen-
denti da s, ma tale dipendenza non è lineare. Per esempio ϕ

′

0 = − h

s
√

s2−h2 . Dunque se

s > min(b, h) la densità f non è costante.
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In countries with well developed interbank market the parsimonious
models play an important role in the monetary policy. For several years
central banks have focused on an extraction of market expectations from
term structures, which helps to judge their influence on real economy. With
the assumption of PEH (with liquidity premium equal to zero), the implied
forward rates are particularly interesting for central banks, especially if the
length of calculated implied forward rate matches with the maturity of the
central bank’s key interest rate. The lower is the difference between an
implied forward rate and a reference rate (ex post analysis), the more clear
and transparent was monetary policy before a decision-making meeting. If
the difference is high, there is a question about the circumstances –

sometimes it is inefficiency of the market (illiquidity), sometimes the
biases: risk premium caused by lack of trust or a surprising decision of the
central bank.

The aim of the paper is twofold: to derive the implied forward rates
from the assets’ prices with a parametric Svensson model and to show their
sensitivity to market disturbances (through ex post analysis of a risk
premium – a difference between an implied forward rate and a reference
rate).

This paper applies data for several segments of Polish market: interbank
deposits forward rate agreements (FRA), interest rate swaps, and coupon
bonds. During last two years we found that there is a period of time when a
higher positive premium in a form of calculated differences was noticed.
The result could be used as a leading indicator of market disturbances –
especially for the central bank who wants (like other central bankers
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around the world) to assure markets that it controls the situation and does
not let investors lose the mutual confidence.

Keywords: yield curve estimation, parsimonious models, market
expectations

JEL Classification: C53, C92, E43, E58

1. Introduction.

Following the definition suggested by Nawalkha, Soto,
Beliaeva (2004), a term structure of interest rates gives the
relationship between the yield of the investment with the same
credit quality but different term to maturity. There are plenty of
methods, widely described by James, Weber (2000) which let
create a yield curve but typically it is built with a set of liquid and
common assets; every instrument can be considered as a portfolio
of zero-coupon bonds (with the maturities adequate to the payment
dates). Price of the zero-coupon bond is expressed as a discount
factor which represents the relationship between the spot rate and
the forward one (Shiller et al. 1983 and 1990, Fama 1976).

Because financial markets offer only discrete data, one of the
most important problems to be solved is the model selection for
fitting the data. In countries with a well developed debt market
central banks use parsimonious models coming from works of
Nelson-Siegel (1987) and Svensson (1994) but the method based
on cubic splines is also popular (McCulloch 1975, Fisher, Nychka,
Zervos 1995, Waggoner 1996). To find the strength and sensitivity
of market expectation to market disturbances the construction of a
wide range of term structures based on different data is necessary.

The paper is structured as follows: Section 2 provides a
general overview of the term structure modelling the evolution of
methods and shows the applications from the central bank’s point
of view, Section 3 shows the methodology of term structure
modelling based on parsimonious Svensson model, Section 4 is an
empirical one which gives short description of Polish market data
used in a further analysis and illustrates an influence of market
expectations (fears and believes) on the term structure. The final
part covers concluding remarks.
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2. Expectations and monetary policy.

Following Tuckman (2002) a forward rate is an agreement
made to lend money at some future date. Choudhry (2004)
differentiates forward rates taken directly from the market from
these implied forward rates which are derived from the spot interest
rates (theoretical ones). Because predictive power of implied
forward rates (as an estimation of the future spot rates) depends on
the efficiency of the market and a kind of biases which may be
included in forward rates, various hypotheses try to explain this
relation. According to one of them, the pure expectation hypothesis
(Lutz 1940-41), the term structure reflects directly the market
expectations of future rates with liquidity premium equal to zero.

With the assumption of PEH (Pure Expectation Hypothesis),
the implied forward rates are particularly interesting for central
banks, especially if the length of calculated implied forward is
tantamount to the duration of the central bank’s key open market
operation. It is very useful for an evaluation of central bank’s
predictability. The lower is the difference between a reference rate
and an implied forward rate (ex post analysis), the clearer and more
transparent monetary policy was before a decision-making meeting.
If the difference is high, the question arises about the circumstances
– sometimes it is an inefficiency of the market (illiquidity),
sometimes a bias mentioned earlier: risk premium caused by lack
of trust or a decision of the central bank which surprised the
market.

It is also possible that market participants could overestimate
the scale of central bank decisions as an effect of
misunderstandings of the monetary policy. Being familiar with
determinants that shaped the term structure, the central bank is able
to improve its transparency through official and unofficial
messages covering information about future interest rates
movements to keep the inter-bank rates as stable as possible
(Choudhry 2002).

3. A yield curve construction

To derive the implied forward rates from the assets’ prices
with a parametric Svensson model first of all one should define the
process of zero-coupon yield construction.
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Definition 1.

Zero-coupon bond is an instrument with only two cashflows:
first – at the beginning of the investment – called the price; the
second one is a cashflow which is paid at maturity.

Suppose the price of the zero-coupon bond is denoted as P,

with a cashflow c at maturity τ and yield to maturity )(τi

understood as a spot rate. If the continuously compound interest is
taken into account, the price is the discounted value of a future

cashflow c :
τττ ⋅−⋅= )()( i

ecP (1)

where:

)(τP - price of the zero-coupon bond with maturity τ

c – cashflow at time τ

)(τi - spot rate

It is important (according to Audley, Chin, and Ramamurthy,
2002) that under continuous compounding, the spot rate is
understood as the continuously compounded instantaneous rate of
return. Graphically, the spot rate may be visualized as the yield
corresponding to the point at which the spot yield curve intercepts
the yield axis.

Definition 2

The function ];(: 10→ℜ+δ is called the discount function if

it fulfills following criteria:

(1) 1)0( =δ

(2) )(τδ is a decreasing function of τ

Here, for our purposes the discount function which represents
continuously compound interest will be expressed as:

τττδ ⋅−= )()( i
e (2)

Lemma:

Every default-free coupon bond can be described as a portfolio
of zero-coupon bonds (with the maturities adequate to the payment
dates).
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Proof: If P is a coupon bond with a set of future cashflows jc , 

observed at time jτ , k21j ,...,,=  and let (for simplicity) spot rates 

jjj ii =)(τ , k21j ,...,,= , then the price of coupon bond could be 

expressed as a present value of cashflows: 

kki

k

ii
ecececP

τττ −−− ⋅++⋅+⋅= ...2211

21
 

According to formula 1, the coupon bond can be described as a 

linear combination of discount factors jδ ,  k21j ,...,,=  : 

kk2211 cccP δδδ ⋅++⋅+⋅= ...  

 

Definition 3 

The instantaneous forward rate ττττ ∆+≡ ,)( ff , defined by O. 

de La Grandville (2001), is understood as the marginal rate of 
return implied for infinitesimally short period (length of 

investment) 0→τ∆  . 

 �=
τ

τ
τ

0

dmmf
1

i )()(  (3) 

The existence of inter-relation between discount factor )(τδ , 

spot rate )(τi  and forward one )(τf  (in continuous time) could be 

– after the formulas (1)-(3) illustrated as below:  

 �===
−⋅−

τ

τττδτ 0
dmmfi

eeP
)()()()(  (4) 

 

where: )(τP - price of a bond 

 )(τδ - discount factor 

 )(τi - spot rate   

 )(τf - forward rate  

 τ - term to maturity 

The term structure construction begins by gathering the sample 
of the instrument to be used. In Polish money market, which is 
analyzed here, there is lack of short term data (apart from money 
market fixing quotations), that is why all available quotations were 
taken into account with no quality check. 

Suppose that there is a set of k instruments, with market values 
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lP , k21l ,...,,=  and cashflows jlc ,  for bond l at time jτ , 

k21j ,...,,= . Let { }
k1jk1ljlcC

,..,,,..,, ==
=  is a cashflow matrix, generally 

sparse one with most entries zero and { }
k1llPP

,..,=
=  is the price 

vector. The knowledge of C and P determines the discount factors: 

 [ ] T
k21CP )()()( τδτδτδ �⋅=   (5) 

To fit the curve it is necessary to choose an interpolation 
method, (a form of a theoretical function) which let receive 

discount factors )(τδ  for all maturities (between zero and infinity). 

McCulloch (1971, 1975) used a piecewise polynomial function, but 
the main problem was the instability of this model and high 
possibility of unrealistic, negative forward rates (through 
formula4). 

An idiosyncrasy of parametric models (which this article 
focuses on) involves their simplicity and small number of 
parameters to be estimated. Additionally the functional form 
determines three main features (smoothness, flexibility and 
stability) expected from correctly estimated curve (Anderson, 
Sleath, 2001). 
 

Table 1. Estimation criteria in case of parametric models
1
 

Parametric models Model 
 Nelson-Siegel Svensson 

Smoothness + + 

Flexibility + - 

Stability - -/+ 

Source: Based on Anderson N., Sleath J., (2001) New estimates of the UK real 

and nominal yield curves. Bank of England Working Paper  

 
The utilization of parametric models (here the Svensson 

model) allows to calculate forward rates directly (and then via 
formula 4, to receive discount factors). It guarantees different 
shapes of a theoretical term structure.  

For the further analysis the Svensson model with six 

                                                           
1 The Nelson-Sigel model uses only four parameters. See e.g.: C. R. Nelson, A. F. Siegel, 
Parsimonious Modeling of Yield Curves. Journal of Business, 1985, Vol. 60, No. 4, s. 
473-489 
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parameters which describes the discount factor 

),,,,,()( 213210 vvββββτδτδ =  is taken into account: 

 21 v

2

3

v

1

210 e
v

e
v

f

ττ
τ

β
τ

βββτ
−−

⋅+⋅++= )()(   (6) 

where:  

)(τf  - instantaneous forward rate  

],,,,,[ 213210 vvββββ  – vector of parameters describing the 

curve:  

0β  - parameter indicates a limit in infinity, 00 >β  

1β  - indicates a limit in infinity, 010 ≥+ ββ  

2β  - parameter indicates a strength of first curvature 

3β  - indicates a strength of second curvature 

1υ  - indicates a place of first curvature, 01 >υ  

2υ  - indicates a place of second curvature, 12 υυ >  

 
According the formula (4) a whole set of discount factors (for 

all cashflows) could be calculated from forward rates. Then a 

vector of theoretical prices { }
k1llPP

,..,=
=   can be described as a 

product of a cash flow matrix C multiplied by a vector of discount 
factors (in a functional form): 

 [ ] T
k21CP )()()( τδτδτδ �⋅=        (7) 

A set of parameters: ],,,,,[ 213210 vvββββ  is estimated by 

minimizing mean square errors between market prices and 
theoretical ones (taken from the fitted curve): 

 min
)(

→
−� =

k

PP
k

1l

2
ll

  (8) 

where: 
ll PP −  – a price error of l-th bond  

 
ll ii −  – a yield error of l-th bond 

 k – number of bonds 

When a vector of discount factors is known, it is easy to 
construct a set of zero-coupon rates (by given formula 4) and then 
implied forward term structure which let analyse a current situation 
in the market.  

 
l

l
li

τ

τδ
τ

)(ln
)( −=       for every cashflow times lτ ; l=1,2...m (9) 
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According to rules laid down for the National Bank of Poland
this analysis uses a Svensson model (due to its simplicity and small
number of parameters to estimate). To calculate the implied

forward rate, the estimation of six parameters [β0; β1; β2; β3; v1; v2]
is needed such that they let minimize the difference between
theoretical and market prices of given papers.

Generally a term structure is typically built with a set of liquid
and common assets; the problem arises in a case of non-liquid
market (as in Poland) with a small number of data. One of
solutions is to analyze several types of models and then to choose
this one which let achieve the best approximation.

4. Data and results

For several years Polish money market has become one of the
most important places of trade in Eastern Europe attracting both
speculators and long term investors. Following the openness and
liberalization, Polish market has started to be more liquid and can
be used as a source of market participant’s behavior.

Four types of instruments were taken into a forthcoming
research. They vary in terms of their liquidity, maturity,
representativeness, and default risk.

Interbank lending rates are represented by WIBOR (Warsaw
InterBank Offer Rate) – a panel of rates calculated and published
each day at 11.00 a.m. of Warsaw time by Reuters service

2
.

Contrary to the LIBOR, the WIBOR rate is an average of
quotations provided by chosen banks which received a Primary
Dealers status. The maturities of WIBOR rates have been changed
during last years (first time WIBOR was published on 15 of March
1993), and nowadays they range from overnight to one year. As a
representative of the interbank market, the WIBOR rates reflect
default risk affected by a quoting bank’s condition (an interbank
loan is unsecured) and liquidity of the market. Because the shortest,
overnight rate illustrates the demand for liquidity and strongly
depends on the obligatory reserve maintenance period, its volatility
is very high. For the purposes of following research only rates from

2
www.reuters.pl
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T/N to one year were taken (eight in total: T/N, 1-week, 2-weeks,
1-month, 3-, 6-, 9-months, one year). According to formula (2) they
let to create the square diagonal matrix of cash flows (with eight
columns and rows) and following (3) with (4) and (5) the
instantaneous implied forward rate could be achieved (it is an
equivalent of the overnight rate in the future, thus the beginning of
both spot and forward rate is at the same point). The existing
instantaneous forward rate let to receive (with the formula 6) 7-
days implied forward rate on any day in the future.

FRA rates are derived from cash market and reflect the current
price of money for an agreed term in future. As an over-the
counter derivative contract between two parties it carries credit and
liquidity risk, but in term of value at risk is lower than connected
cash market’s instruments thanks to the construction of the contract
(there is only an exchange of difference of interest in a form of
settlement or compensation payment). In Poland an existing FRA
market is very liquid mainly as a result of an activity of short-term
foreign investors (speculators) whose generate almost 80%-90% of
transactions. In this paper five contracts were taken (1x2, 1x4, 3x6,
6x9, and 9x12) which let to derive seven theoretical discount
factors (as an equivalent of 1, 2, 3, 4, 6, 9, 12-months). The further
procedure was as before.

Swap rates is an agreement for exchange interest payments
(fixed versus floating) The only payments that are exchanged
between the counterparties are the interest ones, not the principal
thus as in FRA case the default risk connected with this asset is
lower in terms of value at risk. The Polish interest rate swap market
has been increasing for several years and has become very popular
among both domestic and foreign investors. For the purposes of
following research fixed-lag swap rates were taken, ranged from
one to ten years (six in total: 1-year, 2-, 3-, 4-, 5- and 10-years).
Lack of short term rates biases the approximation results – the
constructed term structure is very volatile on its short end.

Government bonds (both coupon and zero coupon ones) are
the papers issued by government of Poland and thus in this country
they are treated as free of credit risk. The problem of
representativeness was solved by taking the fixing rates from a
non-regulated organised market (MTS Poland Market), which
provides wholesale electronic trading of Polish treasury bills and
bonds. In spite of the MTS Poland Market is an integral part of the
Primary Dealer system (developed by the Ministry of Finance in
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cooperation with the National Bank of Poland, the National
Depository for Securities, and banking environment), its liquidity is
not satisfactory – the MTS Poland Market contains only around
20%-25% of bond’s trade (the rest is dealt in the interbank market
without a fixing). The prices used in the research are fixing prices
set during each trading day by MTS Poland Market.

3
The created

term structure – in spite of lack of observed rates – was derived
from coupon bonds so there were a set of cash flows paid in a term
up to one year.

Since 1999 due to the implementation of the direct inflation
targeting strategy (DIT, IT) into Polish monetary policy, the
National Bank of Poland defines the inflation target and then
adjusts basic interest rates in order to maximize the probability of
achieving the target. The NBP maintains interest rates at a level
consistent with the adopted inflation target by influencing the level
of nominal short-term interest rates in the money market. The
minimum yield of the 7-days open market operations is one of the
instruments used by the NBP to determine interest rates in the
market (the reference rate adopted by the Monetary Policy
Council).

The research takes into account eighteen Monetary Policy
Council decision-making meetings held between January 2008 and
June 2009 and the dates two weeks before. For each of these
particular days, four implied forward term structures were
constructed using different sources of data: inter-bank deposit rates,
FRA, swap rates and coupon bonds. Having four estimated vectors
of parameters for each of eighteen dates, a set of 7-days implied

forward rates (for every );(
365
28

365
1∈τ ) was calculated (from

formula 9):

)(ln

)(ln

7

365
)

365

7
,( 365

7

)(
τδ

τδ
ττ

+
=+iassetf (10)

where:

)(iassetf - estimated 7-days forward rate for i-th asset

Chart 1. 7-days forward curves estimated two weeks before
open central bank meeting based on four different assets

3
www.mtspoland.com
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Source: own computations based on bond data 

 
Looking at Chart 1 we can see how market participants 

estimated 7-days rate depending on the data taking into account 
(four different types of assets). They are compared with an official 
7-days reference rate. The point in the middle of each curve shows 
the expected 7-day rate for that day when the Monetary Policy 
Council meeting takes place. Formally it could be shown in a form 
of following formula:  

 
)(ln

)(ln
),(

365
14

365
21

7
365

365
21

365
14

)(
δ

δ
=iassetf  (11) 

Statistically there are no significant differences between the 
data -  but we can notice that WIBOR is the worst one, but no 
instruments clearly dominated. It means that market’s participants 
almost always recognize the direction of future monetary policy 
decisions, but sometimes they were surprised by the scale of the 
movement. It is necessary to remember that the data biases might 
be connected with a scale of liquidity in emerging markets and 
number of data (the set of data used in these calculations is small 
and could be not enough to representative the behavior of the 
market). 

Additionally, the difference between an implied 7-days 
forward rate (calculated in a form 11) and the reference NBP rate 
settled on that day was taken into account (calculated for 18 dates 
and four assets: WIBOR, FRA, swap and coupon bonds). We want 
to examine if the disturbances in financial markets have an 
influence on these differences. 
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Chart 2.  A difference between implied 7-days forward and the 

reference rate (in basis points). 
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Source: own computations 

 
The results shown in Chart 2 could be used as a leading 

indicator of market disturbances – since October 2008 the 
predicting power of all data (especially FRA) has become lower.  
The higher positive premium in a form of calculated differences 
(ranged from 4 to 140 basis points) reflect the investors and traders 
behavior, whose reaction (to new information – here about the 
financial crisis) is exaggerated. This could have caused the assets' 
price to change strongly, so they will not truly reflect the situation 
in the market. In January 2009 the reversal behavior could be 
noticed – in spite of the financial crisis the assets’ prices showed 
the tendency to return back to its common value. It was probably 
the effect of messages sent by central bank’s officials who wanted 
(like other central bankers around the world) to assure markets that 
they control the situation and do not let investors lose the mutual 
confidence.  

In a whole analyzed period the implied forward rate curve 
overestimated future short rates. When the curve was upward 
sloping it was too upward sloping and if the curve was downward 
sloping it was not enough downward sloping. Such surprisingly 
results (meaningless which data were used to create the implied 
forward) give market’s participants an easy possibility to make 
excess profits. For the central bank it is additional information 
which should be taken into account during an analysis of a 
monetary transmission mechanism. 
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5. Summary.

For several years central banks have focused on an extraction
of market expectations from term structures, which helps to judge
their influence on real economy (ECB 2006). In countries with well
developed debt market parsimonious models play an important role
in term structure building process. For research purposes, the most
useful source of rates is the FRA market, which becomes an
important segment of financial markets.

This paper takes data for several segments of Polish market:
interbank deposits forward rate agreements (FRA), interest rate
swaps, and coupon bonds and examines the quality of extracted
market expectation during last 18 months. Parameters were
compared every two weeks before a central bank decision-making
meeting to examine if the market participants expected movements
correctly.

According to the analysis the best source of data seems to be a
derivative market whose construction minimizes the influence of
biases even during turbulences. These results should be interpreted
with caution, since they are specific to one particular Svensson
model. A small open market, very sensitive for external shocks and
speculators’ attacks (like Polish one) is too changeable to take
received results as typical. In such case it is better not to relay on
one source of data but examine several types of assets to get a
wider spectrum of the market’s situation.

The useful supplementary information is that market
participants overestimate (overreaction in a behavioral sense)
future movements of the Polish central bank as an effect of bank
transparency. It is an additional argument for the central bank’s
authorities to inform (officially and unofficially) about future
movements of the key interest rates to keep the interbank rates as
stable as possible.
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INVARIANT THEORY OF FOLIATIONS

OF THE PROJECTIVE PLANE

EDUARDO ESTEVES AND MARINA MARCHISIO

Abstract. We study the invariant theory of singular foliations of the pro-
jective plane. Our first main result is that a foliation of degree m > 1 is not
stable only if it has singularities in dimension 1 or contains an isolated singular
point with multiplicity at least (m2

− 1)/(2m + 1). Our second main result
is the construction of an invariant map from the space of foliations of degree
m to that of curves of degree m2 +m− 2. We describe this map explicitly in
case m = 2.

1. Introduction

The study of (singular) foliations of the projective plane is an old one. It was
central in works by Darboux [4] and Poincaré [11] in the XIX Century. More
recently, the interest in the subject has been revived by Jouanolou [9]. It has
been an active area of study ever since.

If we want to study foliations up to projective equivalence, we enter the realm of
Invariant Theory. Though the motivation for this study is natural, and Invariant
Theory is a classical subject, not much has been done so far in this direction. We
can mention the work by Goméz-Mont and Kempf [8], who have shown that a
foliation whose all singular points have Milnor number 1 is stable. (In fact, they
showed the same result holds for singular foliations of higher dimension spaces as
well.) Only recently, Alcántara [1], [2] has characterized the semi-stable foliations
of degree 1 and 2, and studied their quotient spaces.

In these notes we propose to advance this study. Our first main result is The-
orem 9, which says that a foliation of degree m > 1 is nonstable (resp. nonsemi-
stable) only if it has singularities in dimension 1 or contains an isolated singular
point of multiplicity at least (resp. greater than) (m2 − 1)/(2m+ 1).

Our second main result is Theorem 10, which yields an invariant rational map
Φ from the (projective) space of foliations of degree m ≥ 2 to that of plane curves
of degree m2 +m − 2. Using this map, we can, in principle, produce invariants
of foliations out of invariants of plane curves. However, though the invariants of
plane curves can all be described by the symbolic method of the XIX Century,
generators for the algebras of invariants are known only for very small degrees,
not larger than 8. Since for m ≥ 3, the curves have degree at least 10, the map Φ
might be manageable only for m = 2, in which case we are dealing with quartics.
In this case, we describe the map explicitly in Section 4.

These notes report on work partly done during a visiting professorhip of the
first named author at the Università degli Studi di Torino. That author would like
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2. Singular foliations

1. Foliations. Given a smooth algebraic variety X over an algebraically closed
field k, a d-dimensional foliation of X is a rank-d subbundle of the tangent bundle
of X. Typically though, these subbundles do not exist. For instance, take the
projective plane X := P

2
k . A subbundle of rank 1 of the tangent bundle would

give rise to an exact sequence of locally free sheaves,

0 → O
P

2

k

(m) → Ω1
P

2

k

→ O
P

2

k

(n) → 0

for certain integers m and n, and this sequence would split because

H1(P2
k ,OP

2

k

(m− n)) = 0.

Thus,
Ω1
P

2

k

∼= O
P

2

k

(m)⊕O
P

2

k

(n).

Then it would follow that Euler sequence,

(1) 0 → Ω1
P

2

k

→ O
P

2

k

(−1)⊕3 → O
P

2

k

→ 0,

would split as well, as

H1(P2
k ,OP

2

k

(−m)) = H1(P2
k ,OP

2

k

(−n)) = 0,

giving rise to a nonzero global section of O
P

2

k

(−1), an absurd.

2. Singular foliations. One might ask however not for a subbundle, but for a
subsheaf. This gives rise to a singular foliation. In other words, a singular
foliation is a subsheaf of the tangent sheaf of X. Its dimension is the generic
rank of the sheaf. For instance, take the projective plane X := P

2
k . Given

a singular foliation of dimension 1, we may replace the subsheaf by a possibly
larger reflexive subsheaf. Since X is smooth of dimension 2, this means that the
subsheaf is locally free by [10], Lemma 1.1.10, p. 149. So, a singular foliation of
P

2
k is a nonzero (thus injective) map

(2) η : O
P

2

k

(1−m) −→ T
P

2

k

,

where T
P

2

k

is the tangent sheaf of P2
k . We will deal only with one-dimensional

singular foliations of P2
k from now on, and will thus drop the adjective “singular.”

Taking duals in the Euler sequence (1), we obtain the exact sequence

(3) 0 −→ O
P

2

k

→ O
P

2

k

(1)⊕3 → T
P

2

k

→ 0.

Since Ext1(O
P

2

k

(1−m),O
P

2

k

) = 0, any map η as in (2) lifts to a map

η̃ : O
P

2

k

(1−m) → O
P

2

k

(1)⊕3,
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which corresponds to a choice of three homogeneous polynomials F , G and H of
degree m. In other words, η induces a homogeneous vector field on the three-
dimensional affine space A

3
k:

(4) D := F
∂

∂x
+G

∂

∂y
+H

∂

∂z
.

Here x, y and z are the coordinates of A3
k. This vector field is not unique, as the

lifting η̃ of η is not, but any other vector field is obtaining from the above one by
summing a multiple of the Euler field:

P
(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
.

At any rate, we may harmlessly say that D, instead of η, is the foliation.
Conversely, given D as in (4), one can describe the foliation η in very concrete

terms: the direction given by η at a point (x : y : z) ∈ P
2
k is that of the line

passing through (x : y : z) and (F (x, y, z) : G(x, y, z) : H(x, y, z)), whenever
these two points are distinct.

3. The space of foliations. There are thus many (singular) foliations. In fact,
identifying foliations that differ one from the other by multiplication by a nonzero
constant, we obtain a projective space,

Fm := P(H0(P2
k , TP

2

k

⊗O
P

2

k

(m− 1))).

It follows from the long exact sequence in cohomology associated to (3) that

dimFm = 3h0(P2
k ,OP

2

k

(m))− h0(P2
k ,OP

2

k

(m− 1))− 1

= 3

(
m+ 2

2

)
−

(
m+ 1

2

)
− 1

= m2 + 4m+ 2.

4. Singular points. The map η in (2), though injective, does not give rise to a
subbundle. In other words, the degeneracy scheme of the map is nonempty. The
degeneracy scheme is called the singular locus of the foliation, and its points the
singular points or singularities of the foliation. Since η 6= 0, the dimension of this
locus is at most 1. If the dimension is 1, then η decomposes in a unique way as

O
P

2

k

(1−m) −→ O
P

2

k

(1− n) −→ T
P

2

k

,

where the first map is multiplication by a homogeneous polynomial of degree
m − n, for a certain n < m, and the second is a foliation with finite singular
locus. In this case, we say that η has singularities in dimension 1.

If the dimension is zero each singularity appears with a certain length in the
singular locus, called its Milnor number. Then we can use Porteous Formula (see
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[7], Thm. 14.4, p. 254) to compute the sum δ of the Milnor numbers:

δ =

∫

P
2

k

c2(TP
2

k

⊗O
P

2

k

(m− 1)) ∩ [P2
k ]

=

∫

P
2

k

[
c(O

P
2

k

(m))3

c(O
P

2

k

(m− 1))

]

2

∩ [P2
k ] (Sequence (3) and Whitney Formula)

=

∫

P
2

k

[
(1 +mh)3

1 + (m− 1)h

]

2

∩ [P2
k ] (where h := c1(OP

2

k

(1)))

=

∫

P
2

k

[(1 + 3mh+ 3m2h2)(1− (m− 1)h+ (m− 1)2h2)]2 ∩ [P2
k ]

=(m− 1)2 − 3m(m− 1) + 3m2

=m2 +m+ 1.

Another important invariant of a singular point of the foliation is its multiplic-
ity, the maximum power of the maximal ideal of the local ring of P2 at the point
containing the ideal of the singular locus of the foliation.

5. The degree. Given a singular foliation η as in (2), the integer m, clearly non-
negative, has a geometric interpretation. Indeed, m is the number of tangencies
of η to a general line. More precisely, given a line L on P

2
k , we may look at

the set of points where η is either singular or assigns a line equal to L. Given
a general line, this is a finite set. (Just pick a nonsingular point P of η, and
choose L transversal to the line at P given by η.) The number of points s of this
set, counted with the appropriate weights, is given by Porteous Formula, as the
length of the degeneracy scheme of the map of vector bundles

O
P

2

k

(1−m)|L ⊕ TL
(η|L,β)
−−−−→ T

P
2

k

|L,

where β is the natural inclusion between tangent bundles. Thus

s =

∫

L

(
c1(TP

2

k

|L)− c1(OP
2

k

(1−m)|L)− c1(TL)
)
∩ [L]

=

∫

L

(
3h− (1−m)h− 2h

)
(where h is the class of a point)

=m.

6. The dual point of view. Let

ω :=
2∧
Ω1
P

2

k

∼= O
P

2

k

(−3).

The natural product map

Ω1
P

2

k

⊗ Ω1
P

2

k

−→ ω

gives rise to an isomorphism

Ω1
P

2

k

−→ T
P

2

k

⊗ ω.
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Under this isomorphism, a map η as in (2), which corresponds to a section of
T
P

2

k

⊗O
P

2

k

(m− 1), corresponds to a section

(5) τ ∈ H0(P2
k ,Ω

1
P

2

k

⊗O
P

2

k

(m+ 2)).

Because of (1), this section corresponds to three homogeneous polynomials A, B
and C of degree m+ 1 satisfying the relation

(6) xA+ yB + zC = 0.

We may view the polynomials as giving a homogeneous form on A
3
k:

(7) w := Adx+Bdy + Cdz.

If η is given by D as in (4), then w is obtained from the determinant:
∣∣∣∣∣∣

x y z
F G H
dx dy dz

∣∣∣∣∣∣

In other words, A = yH − zG, B = zF − xH and C = xG− yF . Of course, the
assignment η 7→ τ gives rise to a (linear) isomorphism:

P(H0(P2
k , TP

2

k

⊗O
P

2

k

(m− 1))) −→ P(H0(P2
k ,Ω

1
P

2

k

⊗O
P

2

k

(m+ 2))).

We may view Fm as the space on the left-hand side or that on the right-hand
side, at our convenience. And we may harmlessly say that τ or w is the foliation.

Geometrically, for each point (a : b : c) of P2
k the direction at the point given

by η is that of the line with equation:

A(a, b, c)x+B(a, b, c)y + C(a, b, c)z = 0.

And the singular locus of the foliation is given by A = B = C = 0.
Notice that, because of (6), the singular locus is locally given by two equa-

tions. So the following inequality holds relating the Milnor number µP and the
multiplicity eP of a singularity P of the foliation:

µP ≥
(eP + 1)eP

2
+ eP − 1 =

e2P + 3eP − 2

2
.

3. The action

7. The action. The group of automorphisms of P2
k , namely PGL(3), acts in a

natural way on the space of foliations. The action can be described very simply
in geometric terms: Let φ be an automorphism of P2

k ; given a foliation η, the
new foliation φ · η assigns to every point P ∈ P

2
k the line φ(L), where L is the

line given by η at φ−1(P ). Algebraically, let g be a 3-by-3 matrix corresponding
to φ, and let w as in (7) correspond to η. Then φ · η corresponds to g · w, where

g · w =
[
Ag Bg Cg

]
g−1



dx
dy
dz


 .
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(Given any polynomial P ∈ k[x, y, z], we denote by P g the polynomial which,
viewed as a function on A

3
k, interpreted as the space of column vectors of dimen-

sion 3, satisfies

P g(v) = P (g−1v) for each v ∈ A
3
k.)

8. Stable points. The action of PGL(3) produces the same orbits as the action
by SL(3), the special linear group, that of 3-by-3 matrices with determinant 1,
induced by the natural surjection SL(3) → PGL(3). So we will consider this
induced action.

Geometric Invariant Theory tells us that there is a categorical quotient of a
certain open subset of Fm, that of semi-stable points. The semi-stable points are
those for which there is an invariant homogeneous polynomial on the coordinates
of Fm not vanishing at the point. And the quotient is simply the projective
scheme associated to the (graded) algebra of invariants. Furthermore, a smaller
open subset of Fm, consisting of stable points, whose orbits in the semi-stable
locus are closed, admits even a geometric quotient, which is thus an orbit space;
see [6].

To understand the quotient, it is crucial to describe the semi-stable points.
However, it is not easy to determine them from the definition. A lot more manage-
able than the definition is the Hilbert–Mumford Numerical Criterion, by means
of one-parameter subgroups.

It was using this criterion that Goméz-Mont and Kempf [8] have shown that
a foliation whose all singular points have Milnor number 1 is stable, that is,
corresponds to a stable point of Fm. And Alcántara [1], [2] has characterized the
semi-stable foliations of degrees 1 and 2.

In our case, a one-parameter subgroup is a nontrivial homomorphism of alge-
braic groups λ : Gm → SL(3), where Gm is the multiplicative group of the field
k. Every such homomorphism is diagonalizable: there is g ∈ SL(3) such that

g−1λ(t)g = λr1,r2,r3(t), where λr1,r2,r3(t) =



tr1 0 0
0 tr2 0
0 0 tr3




for each t ∈ Gm. Since detλ(t) = 1 for every t, the ri are integers such that

r0 + r1 + r2 = 0.

We may also assume that r1 ≥ r2 ≥ r3. Since λ is nontrivial, r1 > 0 > r3.
Now, the space of forms w as in (7), satisfying (6), has a basis of the form:

(8)

w1
α := xα1yα2zα3(−ydx+ xdy),

w2
β := xβ1yβ2zβ3(−zdx+ xdz),

w3
γ := yγ2zγ3(−zdy + ydz),

where α := (α1, α2, α3) and β := (β1, β2, β3) (resp. γ := (γ2, γ3)) run through
all triples (resp. pairs) of nonnegative integers summing up to m. This basis
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diagonalizes the action of λr1,r2,r3 . More precisely,

λr1,r2,r3(t) · w
1
α = t−r1(α1+1)−r2(α2+1)−r3α3w1

α,

λr1,r2,r3(t) · w
2
β = t−r1(β1+1)−r2β2−r3(β3+1)w2

β ,

λr1,r2,r3(t) · w
3
γ = t−r2(γ2+1)−r3(γ3+1)w3

γ .

Finally, consider a point of Fm, corresponding to w as in (7). Then, for each
g ∈ SL(3),

(9) g · w =
∑

α

aα(g)w
1
α +

∑

β

bβ(g)w
2
β +

∑

γ

cγ(g)w
3
γ ,

for unique aα(g), bβ(g) and cγ(g) in k. Then the Hilbert–Mumford Numerical
Criterion says that w is not stable, that is, the corresponding point on Fm is
not stable, if and only if there are g ∈ SL(3) and integers r1, r2, r3 satisfying
r1+r2+r3 = 0 and 0 < r1 ≥ r2 ≥ r3 < 0 such that all of the following conditions
hold:

(10)

r1(α1 + 1) + r2(α2 + 1) + r3α3 ≤0 if aα(g) 6= 0,

r1(β1 + 1) + r2β2 + r3(β3 + 1) ≤0 if bβ(g) 6= 0,

r2(γ2 + 1) + r3(γ3 + 1) ≤0 if cγ(g) 6= 0.

Furthermore, w is nonsemi-stable if in addition all the inequalities above are
strict.

Theorem 9. A foliation of degree m > 1 is nonstable (resp. nonsemi-stable) only
if it has singularities in dimension 1 or contains an isolated singular point with
multiplicity at least (resp. greater than) (m2 − 1)/(2m+ 1).

Proof. Let w as in (7) correspond to the foliation. Assume first that w is nonsta-
ble. Then there are g ∈ SL(3) and integers r1, r2, r3 satisfying

(11) r1 + r2 + r3 = 0 and 0 < r1 ≥ r2 ≥ r3 < 0

such that (10) holds. Since w is stable if and only g ·w is, and the foliation w has
singularities in dimension 1 or contains an isolated singular point with a certain
multiplicity if and only if the same holds for g · w, we may assume that g = 1,
and simplify the notation:

aα := aα(1), bβ := bβ(1), cγ := cγ(1).

We claim that either the foliation has singularities in dimension 1 or

(12) r2 ≤
−r3
m+ 1

.

Indeed, suppose (12) does not hold. Let α = (α1, α2, α3) be a triple of nonnegative
integers with α3 = 0 and α1+α2 = m. Then, since α1, r1−r2 ≥ 0 and −r3, r2 > 0,

0 < (r1 − r2)α1 + r2m− r3 = (r1 − r2)α1 + r2(α1 + α2)− r3

= r1(α1 + 1) + r2(α2 + 1) + r3α3.
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Thus (10) yields aα = 0.
Also, let β = (β1, β2, β3) be a triple of nonnegative integers with β3 = 0 and

β1 + β2 = m. Then, since β1, r1 − r2 ≥ 0 and r2,m− 1 > 0,

0 < (r1 − r2)β1 + r2(m− 1) = (r1 − r2)β1 + r2(β1 + β2)− r2

= r1(β1 + 1) + r2β2 + r3(β3 + 1).

Thus (10) yields bβ = 0.
Finally, since r2(m+ 1) + r3 > 0, we have that c(m,0) = 0. But then it follows

from (9) that z|w, and thus the singular locus of the foliation contains a line.
Assume now that the singular locus of the foliation is finite. Then (12) holds,

from which we obtain

(13) r1 − r3 = −r2 − 2r3 ≥
r3

m+ 1
− 2r3 = −r3

2m+ 1

m+ 1
.

Let α = (α1, α2, α3) be a triple of nonnegative integers summing up to m. We
claim:

(14) If α1 >
m2 − 1

2m+ 1
then aα = 0.

Indeed, if α1 > (m2 − 1)/(2m+ 1) then

r1(α1 + 1) + r2(α2 + 1) + r3α3 = (r1 − r3)α1 + (r2 − r3)α2 + r3(m− 1)

≥ −r3
2m+ 1

m+ 1
α1 + r3(m− 1)

> 0,

where for the equality above we used that α3 = m− α1 − α2 and r3 = −r1 − r2,
and for the first inequality we used (13), α2 ≥ 0 and r2 ≥ r3. Thus aα = 0 from
(10).

Similarly:

(15) If β1 >
m2 +m+ 1

2m+ 1
then bβ = 0.

Indeed, if β1 > (m2 +m+ 1)/(2m+ 1) then

r1(β1 + 1) + r2β2 + r3(β3 + 1) = (r1 − r3)β1 + (r2 − r3)β2 + r3m− r2

≥ −r3
2m+ 1

m+ 1
β1 + r3

(
m+

1

m+ 1

)

> 0,

where for the first inequality above we used (12). Thus bβ = 0 from (10).
Now, using (8) to expand (9), we get w = Adx+Bdy + Cdz, where

B =
∑

α

aαx
α1+1yα2zα3 −

∑

γ

cγy
γ2zγ3+1,

C =
∑

β

bβx
β1+1yβ2zβ3 +

∑

γ

cγy
γ2+1zγ3 .
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Let P := (1 : 0 : 0). Since xA + yB + zC = 0, the ideal of the singular locus
of the foliation at P is generated by B(1, y/x, z/x) and C(1, y/x, z/x). Since
γ2 + γ3 = m, it follows that the multiplicity of the foliation at P is min(m+1, ξ)
where

ξ :=min
(
min(α2 + α3 | aα 6= 0),min(β2 + β3 | bβ 6= 0)

)

=min
(
min(m− α1 | aα 6= 0),min(m− β1 | bβ 6= 0)

)

=m−max
(
max(α1 | aα 6= 0),max(β1 | bβ 6= 0)

)
.

(The minimum (resp. maximum) of the empty set is +∞ (resp. −∞) by conven-
tion.) Thus, it follows from (14) and (15) that

(16) ξ ≥ m−max
(m2 − 1

2m+ 1
,
m2 +m+ 1

2m+ 1

)
= m−

m2 +m+ 1

2m+ 1
=

m2 − 1

2m+ 1
.

If w is nonsemi-stable then the same proof works with the following modifica-
tions: the inequality in (12) is strict while those in (13), (14), (15) and (16) are
not. �

4. The dual discriminant curve

Theorem 10. Given a foliation of P2
k of degree m ≥ 2 whose singular locus does

not contain a double curve, the lines tangent to the foliation with multiplicity at

least 2 are parameterized by a curve on the dual plane P̌
2
k of degree m2 +m− 2.

Proof. Let x̌, y̌ and ž be coordinates of P̌
2
k dual to x, y and z. The incidence

variety I ⊂ P
2
k × P̌

2
k is thus given by

x̌x+ y̌y + žz = 0.

Let D as in (4) correspond to the foliation. Requiring the above line to be tangent
to the foliation at (x : y : z) is to impose that

x̌F + y̌G+ žH = 0.

Let V ⊆ I be the subscheme of I given by the above equation. It parameterizes
the pairs (P,L) where L is a line on P

2
k and P is a point on L where the foliation

is singular or tangent to L. Let π : V → P̌
2
k denote the projection, and let D ⊆ V

be the degeneracy locus of the natural map π∗Ω1

P̌
2

k

→ Ω1
V . Since the singular

locus of the foliation contains no double curve, π(D) 6= P̌
2
k . Let C ⊆ P̌

2
k be the

curve such that π∗[D] = [C] as cycles. This is the curve parameterizing lines
tangent to the foliation with multiplicity at least 2.

We claim that degC = m2 +m− 2. Indeed, let h1 (resp. h2) be the pullback

to P
2
k × P̌

2
k of the hyperplane class h on P

2
k (resp. ȟ on P̌

2
k ). Then

[I] = h1 + h2 and [V ] = (h1 + h2)(mh1 + h2)

in the Chow ring of P2
k × P̌

2
k . Now,

[D] = c1(Ω
1
V ) ∩ [V ]− c1(π

∗Ω1

P̌
2

k

) ∩ [V ].
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It follows from the Whitney Sum Formula ([7], Thm. 3.2(e), p. 50) and the Euler
exact sequence that

π∗c1(Ω
1

P̌
2

k

) ∩ [P2
k × P̌

2
k ] = −3h2.

In addition, Ω1
V sits in the natural exact sequence,

0 −→ OV (−1,−1)⊕OV (−m,−1) −→ Ω1

P
2

k
×P̌

2

k

|V −→ Ω1
V −→ 0.

Thus, applying the Whitney Sum Formula again,

c1(Ω
1
V ) ∩ [V ] =(−3(h1 + h2) + (h1 + h2) + (mh1 + h2))[V ]

=((m− 2)h1 − h2)[V ].

So,

[D] = ((m− 2)h1 + 2h2)[V ] = ((m− 2)h1 + 2h2)(h1 + h2)(mh1 + h2).

Since h31 = h32 = 0, we get

[D] =(2m+m(m− 2) + (m− 2))h21h2 + ((m− 2) + 2 + 2m)h1h
2
2

=(m2 +m− 2)h21h2 + 3mh1h
2
2,

and thus π∗[D] = (m2 +m− 2)h. �

11. Degree 2. Let

Cd := P(H0(P2
k ,OP

2

k

(d))),

the projective space parameterizing plane curves of degree d. It has dimension
(d2 + 3d)/2. By Theorem 10, there is a rational map

Φ: Fm 99K Cm2+m−2.

In case m = 2, both the target and the source of Φ have the same dimension, as

m2 + 4m+ 2 =
(m2 +m− 2)2 + 3(m2 +m− 2)

2
= 14.

In this case, the dimensions are small enough that Φ can be explicitly described,
using CoCoA[3] (assuming the ground field k has characteristic 0).

Consider a point of F2 given by w as in (7). As in Section 3 we may write

w =
∑

α

aαw
1
α +

∑

β

bβw
2
β +

∑

γ

cγw
3
γ ,

for unique aα, bβ and cγ in k, where α := (α1, α2, α3) and β := (β1, β2, β3)
(resp. γ := (γ2, γ3)) run through all triples (resp. pairs) of nonnegative integers
summing up to 2, and the w1

α, w
2
β and w3

γ are given in (8).
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The coefficients aα, bβ and cγ can be seen as coordinates of F2
∼= P

14
k . Then

the associated quartic to w is given by:

(
c(2,0)c(0,2) −

c2(1,1)

4

)
x̌4 +

(c(1,1)b(0,1,1)
2

− c(0,2)b(0,2,0) − c(2,0)b(0,0,2)

)
x̌3y̌

+
(
b(0,2,0)b(0,0,2) + c(0,2)b(1,1,0) −

b2(0,1,1)

4
−

c(1,1)b(1,0,1)

2

)
x̌2y̌2

+
(b(1,0,1)b(0,1,1)

2
− c(0,2)b(2,0,0) − b(0,0,2)b(1,1,0)

)
x̌y̌3 +

(
b(2,0,0)b(0,0,2) −

b2(1,0,1)

4

)
y̌4

+
(
c(0,2)a(0,2,0) + c(2,0)a(0,0,2) −

c(1,1)a(0,1,1)

2

)
x̌3ž

+
(c(1,1)a(1,0,1)

2
+

b(0,1,1)a(0,1,1)

2
+ c(2,0)b(1,0,1) −

c(1,1)b(1,1,0)

2
− b(0,0,2)a(0,2,0)

− b(0,2,0)a(0,0,2) − c(0,2)a(1,1,0)

)
x̌2y̌ž

+
(b(1,1,0)b(0,1,1)

2
+ c(0,2)a(2,0,0) + b(1,1,0)a(0,0,2) + b(0,0,2)a(1,1,0) + c(1,1)b(2,0,0)

−
b(0,1,1)a(1,0,1)

2
−

b(1,0,1)a(0,1,1)

2
− b(0,2,0)b(1,0,1)

)
x̌y̌2ž

+
(b(1,1,0)b(1,0,1)

2
+

b(1,0,1)a(1,0,1)

2

− b(2,0,0)b(0,1,1) − b(0,0,2)a(2,0,0) − b(2,0,0)a(0,0,2)

)
y̌3ž

+
(
a(0,2,0)a(0,0,2) +

c(1,1)a(1,1,0)

2
−

a2(0,1,1)

4
− c(2,0)a(1,0,1)

)
x̌2ž2

+
(a(1,0,1)a(0,1,1)

2
+ b(1,0,1)a(0,2,0) + b(0,2,0)a(1,0,1) −

b(0,1,1)a(1,1,0)

2
−

b(1,1,0)a(0,1,1)

2

− c(2,0)b(2,0,0) − c(1,1)a(2,0,0) − a(0,0,2)a(1,1,0)

)
x̌y̌ž2

+
(
b(2,0,0)b(0,2,0) + b(0,1,1)a(2,0,0) + a(2,0,0)a(0,0,2) + b(2,0,0)a(0,1,1) −

b2(1,1,0)

4
−

a2(1,0,1)

4

−
b(1,0,1)a(1,1,0)

2
−

b(1,1,0)a(1,0,1)

2

)
y̌2ž2

+
(a(1,1,0)a(0,1,1)

2
+ c(2,0)a(2,0,0) − a(0,2,0)a(1,0,1)

)
x̌ž3

+
(b(1,1,0)a(1,1,0)

2
+

a(1,1,0)a(1,0,1)

2

− b(0,2,0)a(2,0,0) − b(2,0,0)a(0,2,0) − a(2,0,0)a(0,1,1)

)
y̌ž3

+
(
a(2,0,0)a(0,2,0) −

a2(1,1,0)

4

)
ž4 = 0,

where x̌, y̌ and ž are the coordinates of P̌
2
k dual to x, y and z.
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12. Invariants and instability. Invariants for degree-2 foliations can thus be
obtained from invariants for plane quartics by composition. However, the latter
invariants are not completely known. In [5], Thm. 3.2, p. 286, assuming k is the
field of complex numbers, Dixmier produced a homogeneous system of parameters
for the algebra of invariants of the quartics: seven homogeneous invariants of
degrees 3, 6, 9, 12, 15, 18 and 27. More invariants should be necessary. According
to [5], p. 280, the algebra of invariants can be generated by 56 invariants, though
Shioda [12], p. 1046, conjectured that 13 should be enough.

At any rate, if the foliation is not semi-stable, neither is the corresponding
quartic. This can be seen directly from our explicit description of the associated
quartic, as follows. If w is not semi-stable, there are g ∈ SL(3) and integers
r1, r2, r3 satisfying

r1 + r2 + r3 = 0 and 0 < r1 ≥ r2 ≥ r3 < 0

such that (10) holds and the inequalities are strict. As in the proof of Theorem 9,
assume g = 1. Then, reasoning as in the proof of that theorem, we can show that

(17) a(2,0,0) = a(1,1,0) = a(1,0,1) = b(2,0,0) = b(1,1,0) = 0.

Furthermore, either b(1,0,1) = 0 or

(18) a(0,2,0) = a(0,1,1) = b(0,2,0) = 0.

Thus, using (17) to simplify the equation of the quartic, we get:
(19)

(
c(2,0)c(0,2) −

c2(1,1)

4

)
x̌4 +

(c(1,1)b(0,1,1)
2

− c(0,2)b(0,2,0) − c(2,0)b(0,0,2) = 0
)
x̌3y̌

+
(
b(0,2,0)b(0,0,2) −

b2(0,1,1)

4
−

c(1,1)b(1,0,1)

2

)
x̌2y̌2 +

(b(1,0,1)b(0,1,1)
2

)
x̌y̌3

−
(b2(1,0,1)

4

)
y̌4 +

(
c(0,2)a(0,2,0) + c(2,0)a(0,0,2) −

c(1,1)a(0,1,1)

2

)
x̌3ž

+
(b(0,1,1)a(0,1,1)

2
+ c(2,0)b(1,0,1) − b(0,0,2)a(0,2,0) − b(0,2,0)a(0,0,2)

)
x̌2y̌ž

−
(
b(0,2,0)b(1,0,1) +

b(1,0,1)a(0,1,1)

2

)
x̌y̌2ž +

(
a(0,2,0)a(0,0,2) −

a2(0,1,1)

4

)
x̌2ž2

+
(
b(1,0,1)a(0,2,0)

)
x̌y̌ž2 = 0.

Then (0 : 0 : 1) is a singular point of the quartic. Furthermore, if b(1,0,1) 6= 0,
then (18) holds, and the equation becomes:

(
c(2,0)c(0,2) −

c2(1,1)

4

)
x̌4 +

(c(1,1)b(0,1,1)
2

− c(2,0)b(0,0,2)

)
x̌3y̌

−
(b2(0,1,1)

4
+

c(1,1)b(1,0,1)

2

)
x̌2y̌2 +

(b(1,0,1)b(0,1,1)
2

)
x̌y̌3 −

(b2(1,0,1)
4

)
y̌4

+
(
c(2,0)a(0,0,2)

)
x̌3ž +

(
c(2,0)b(1,0,1)

)
x̌2y̌ž = 0.
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In this case, the quartic has a triple point at (0 : 0 : 1) with two equal tangent
lines, or a quadruple point, whence is not semi-stable, according to [6], p. 80. On
the other hand, if b(1,0,1) = 0, then the equation of the quartic becomes

(
c(2,0)c(0,2) −

c2(1,1)

4

)
x̌4 +

(c(1,1)b(0,1,1)
2

− c(0,2)b(0,2,0) − c(2,0)b(0,0,2)

)
x̌3y̌

+
(
b(0,2,0)b(0,0,2) −

b2(0,1,1)

4

)
x̌2y̌2 +

(
c(0,2)a(0,2,0) + c(2,0)a(0,0,2) −

c(1,1)a(0,1,1)

2

)
x̌3ž

+
(b(0,1,1)a(0,1,1)

2
− b(0,0,2)a(0,2,0) − b(0,2,0)a(0,0,2)

)
x̌2y̌ž

+
(
a(0,2,0)a(0,0,2) −

a2(0,1,1)

4

)
x̌2ž2 = 0,

whence the union of a double line, x̌ = 0, and a conic, thus again not semi-stable,
according to loc. cit..

However, there are nonsemi-stable quartics with milder singularities that do
not correspond to nonsemi-stable foliations. For instance, if we set (17), we end
up with Equation (19) for the quartic. If we further set a(0,2,0) = a(0,1,1) = 0, we
get

(20)

(
c(2,0)c(0,2) −

c2(1,1)

4

)
x̌4 +

(c(1,1)b(0,1,1)
2

− c(0,2)b(0,2,0) − c(2,0)b(0,0,2)

)
x̌3y̌

+
(
b(0,2,0)b(0,0,2) −

b2(0,1,1)

4
−

c(1,1)b(1,0,1)

2

)
x̌2y̌2 +

(b(1,0,1)b(0,1,1)
2

)
x̌y̌3

−
(b2(1,0,1)

4

)
y̌4 +

(
c(2,0)a(0,0,2)

)
x̌3ž +

(
c(2,0)b(1,0,1) − b(0,2,0)a(0,0,2)

)
x̌2y̌ž

−
(
b(0,2,0)b(1,0,1)

)
x̌y̌2ž = 0.

This quartic has a triple or quadruple point, and is thus nonsemi-stable. If we
choose the remaining coordinates of F2 such that

b(1,0,1)b(0,2,0) 6= 0 and b(1,0,1)c(2,0) + a(0,0,2)b(0,2,0) 6= 0,

then the triple point has distinct tangent lines. If we now let none of these lines
be contained in the quartic, which is an open condition on the parameters that
can be satisfied, as it can be easily verified with CoCoA[3], then (0 : 0 : 1) is the
unique singular point of the quartic. Thus, the quartic arises from a semi-stable
foliation. The above simple example shows that there are invariants of degree-2
foliations that do not arise from invariants of quartics.
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[9] J.-P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708,
Springer-Verlag, Berlin, 1979.

[10] C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces,
Progress in Mathematics, vol. 3, Birkhäuser, Boston, 1980.
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Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110,

22460-320 Rio de Janeiro RJ, Brazil

E-mail address: esteves@impa.br
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Abstract

In this paper we solve problems of Buffon type for a regular lattice
with fundamental cell an equilateral triangle with equilateral triangles
(Fig.1) or circular sectors (Fig.8) as obstacles.

Introduction

A problem of Buffon type for triangular lattices with triangular obstacles
was previously studied by Stoka and Duma in [1], where they considered as
test bodies rectangles of constant sides, circles of constant radius, equilat-
eral triangles of constant side or segments of non-small constant length. In
particular the barycenters of the triangular obstacles were in the vertices
of the triangles of the lattice. In this paper we consider first triangular
lattices with equilateral triangular obstacles, whose one of the vertices co-
incides with one of the vertices of the equilateral triangle, fundamental cell
in the lattice (see Fig.1). After we consider as obstacles circular sectors (as
appears in Fig.8). As test bodies we take a line segment of constant length.

1

Let R1(a, b) be a regular lattice whose fundamental cell is a equilateral tri-

angle, with edge a, with equilateral obstacles, with edge b, b <
a

2
, (Fig.1):

1
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b b

C
(1)
0

a

Fig.1

Denoting by C
(1)
0 this cell, we have

area C
(1)
0 =

√
3a2

4
− 3

√
3b2

4
.

We want to determine the probability that a line segment s of constant

length l (with b < l <
a

2
) and of random position intersects an edge of the

lattice R1; obviously this probability is equal to the probability P
(1)
int that

the line segment s intersects an edge of the fundamental cell.
Consider now a position of the line segment s of midpoint p that shapes an
angle ϕ with the coordinate axis x. Moreover, consider the limit positions

of the line segment s and let Ĉ
(1)
0 (ϕ) be the figure determined by these

positions for a fixed value of ϕ, (Fig.2):

B2

a1B3

O1

A1

A2

a1

B

a5

a4a3
O2 O3B1 C1

C

A

C2

a2

Fig.2

With the notations of the previous figure, it follows area Ĉ
(1)
0 (ϕ) =

2
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area C
(1)
0 −[2 area a1(ϕ)+ area a2(ϕ)+ area a3(ϕ) area a4(ϕ)+ area a5(ϕ)].

(1.1)

To compute the area a1(ϕ), consider the figure

...............................................................................................................
A1

A2

ϕ

h1

Fig.3

A

We have

| A1A2 |= l, | AA1 |= b, ÂA1A2 = ϕ, Â2AA1 =
2π

3
, ÂA2A1 =

π

3
− ϕ, (1.2)

then
h1 = bsinϕ

and

area a1(ϕ) =
lh1
2

that is

area a1(ϕ) =
bl sinϕ

2
.

Moreover, by the triangle AA1A2 it follows

| AA2 |
sinϕ

=
l

sin 2π
3

=
b

sin(π3 − ϕ)
, (1.3)

then

| AA2 |=
2
√
3l sinϕ

3
. (1.4)

To compute area a2(ϕ), consider the figure

3
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..............................................................

l/2
A2

A3

B2B1
ϕ

h2

Fig.4

Taking in account the relation (1.4), one has

| A2B1 |= a− 2b− | AA2 |= a− 2b− 2
√
3l sinϕ

3
. (1.5)

Since Â2B1B2 =
π

3
− ϕ, it follows

h2 =
l

2
sin(

π

3
− ϕ) =

l

4
(
√
3 cosϕ− sinϕ).

Then

area a2(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)
(
√
3 cosϕ− sinϕ)

l

4
. (1.6)

The figure

B2

B3B1

B

h3
π/3 ϕ

l/2 b

Fig.5

allow us to compute the area a5.
We have

B̂B1B2 =
2π

3
− ϕ, B̂1BB3 =

π

3
+ ϕ,

then

h3 =
l

2
sin(

π

3
+ ϕ) =

l

4
(
√
3 cosϕ+ sinϕ)

and

area a3(ϕ) =
bl

4
(
√
3 cosϕ+ sinϕ). (1.7)

4
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To compute area a4(ϕ), consider the figure

B3 C3

C2B
Fig.6

l/2 h4

that provides

h4 =
l

2
sinϕ.

We have ∆AA1A2 = ∆CC1C2, then | C1C2 |=| AA2 and with 1.4,

| C1C2 |=
2
√
3l sinϕ

3
.

Then

| BC2 |= a− 2b− | C1C2 |= a− 2b− 2
√
3l sinϕ

3

l

2
sinϕ. The figure

l/2 A1
A3

C3

C

h5

Fig.7

gives us | CA1 |= a− 2b. Since Â1A3C3 =
2π
3 − ϕ, we have

h5 =
l

2
sin(

π

3
+ ϕ) =

l

4
(
√
3 cosϕ+ sinϕ)

and

area a5(ϕ) =| A3C3 | h5 =
(a− 2b)l

a
(
√
3 cosϕ+ sinϕ). (1.8)

5
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Replacing in (1.1) the relation (1.3), (1.5), (1.6), (1.7), (1.8) we obtain

area Ĉ
(1)
0 (ϕ) = area C

(1)
0 − [bl sinϕ+ (a− 2b− 2

√
3 sinϕ

3
)](

√
3 cosϕ− sinϕ)

l

4
+

bl

4
(
√
3 cosϕ+ sinϕ) + (a− 2b− 2

√
3

3
l sinϕ)

l

2
sinϕ) +

a− 2b

4
(
√
3 cosϕ+ sinϕ)l =

area C
(1)
0 +−1

4
[
√
3(2a− 3b)l cosϕ+ (b− a)l sinϕ− l2(sin 2ϕ+

√
3

3
cos 2ϕ−

√
3

3
)].(1.9)

Denoting by M1 the set of the line segments s that have the midpoint

in C
(1)
0 and with N1 the set of the segments s entirely contained in C

(1)
0 ,

we have [2]:

P
(1)
int = 1− µ(N1)

µ(M1)
, (1.10)

where µ is the Lesbegue measure in the euclidian plane. The measures
µ(M1) and µ(N1) are computed using the cinematic measure of Poincarè
[1]

dK = dx ∧ dy ∧ dϕ,

where x, y are the coordinates of the midpoint p of the segment s and
ϕ is the angle already defined.
Since ϕ ∈ [0, π3 ], we have:

µ(M1) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈C(1)
0 }

=

∫ π

3

0
areaC

(1)
0 dϕ =

π

3
area C

(1)
0 (1.11)

and taking in account the relation (1.9),

µ(N1) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈Ĉ(1)
0 }

=

∫ π

3

0
area Ĉ

(1)
0 dϕ =

π

3
area C

(1)
0 +

−1

4

∫ π

3

0

[
(2a− 3b)

√
3l cosϕ+ (b− a)l sinϕ− l2

(
sin 2ϕ +

√
3

3
cos 2ϕ−

√
3

3

)]
dϕ =

π

3
area C

(1)
0 − 1

4
[(a− 4b)l − (

9

4
− π

√
3

9
l2)]. (1.12)

The relations (1.10), (1.11), (1.12) give us

P
(1)
int =

3[(a− 4b)l − (94 − π
√
3

9 )l2]

π
√
3(a2 − 3b2)

. (1.13)
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Replacing in (1.1) the relation (1.3), (1.5), (1.6), (1.7), (1.8) we obtain

area Ĉ
(1)
0 (ϕ) = area C

(1)
0 − [bl sinϕ+ (a− 2b− 2

√
3 sinϕ

3
)](

√
3 cosϕ− sinϕ)

l

4
+

bl

4
(
√
3 cosϕ+ sinϕ) + (a− 2b− 2

√
3

3
l sinϕ)

l

2
sinϕ) +

a− 2b

4
(
√
3 cosϕ+ sinϕ)l =

area C
(1)
0 +−1

4
[
√
3(2a− 3b)l cosϕ+ (b− a)l sinϕ− l2(sin 2ϕ+

√
3

3
cos 2ϕ−

√
3

3
)].(1.9)

Denoting by M1 the set of the line segments s that have the midpoint

in C
(1)
0 and with N1 the set of the segments s entirely contained in C

(1)
0 ,

we have [2]:

P
(1)
int = 1− µ(N1)

µ(M1)
, (1.10)

where µ is the Lesbegue measure in the euclidian plane. The measures
µ(M1) and µ(N1) are computed using the cinematic measure of Poincarè
[1]

dK = dx ∧ dy ∧ dϕ,

where x, y are the coordinates of the midpoint p of the segment s and
ϕ is the angle already defined.
Since ϕ ∈ [0, π3 ], we have:

µ(M1) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈C(1)
0 }

=

∫ π

3

0
areaC

(1)
0 dϕ =

π

3
area C

(1)
0 (1.11)

and taking in account the relation (1.9),

µ(N1) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈Ĉ(1)
0 }

=

∫ π

3

0
area Ĉ

(1)
0 dϕ =

π

3
area C

(1)
0 +

−1

4

∫ π

3

0

[
(2a− 3b)

√
3l cosϕ+ (b− a)l sinϕ− l2

(
sin 2ϕ +

√
3

3
cos 2ϕ−

√
3

3

)]
dϕ =

π

3
area C

(1)
0 − 1

4
[(a− 4b)l − (

9

4
− π

√
3

9
l2)]. (1.12)

The relations (1.10), (1.11), (1.12) give us

P
(1)
int =

3[(a− 4b)l − (94 − π
√
3

9 )l2]

π
√
3(a2 − 3b2)

. (1.13)

6



2

Let R2(a, b) be the regular lattice with fundamental cell an equilateral
triangle with circular sector as obstacles (Fig. 8)

b b

C
(2)
0

a

Fig.8

Denoting by C
(2)
0 this cell, we have

areaC
(2)
0 =

√
3a2

4
− 3

πb2

6
.

As in the previous Section, we want to compute the probability that

a line segment s of constant length l (with b < l <
a

2
) and of random

position intersects an edge of the lattice R2, that is the probability P
(2)
int

that the line segment s intersects an edge of the fundamental cell. Consider
a position of the line segment s of midpoint p that shapes an angle ϕ with

the coordinate axis x. Denote by Ĉ
(2)
0 the figure determined by the limit

positions of the line segment s for a fixed value of ϕ (Fig.9)

B2

C1

B3

O1

A1

A2

b1

B

b5

b1
O2 O3B1

b4

C

A

C2

b2

Fig.9

b3

7
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From the notations of the previous figure, it follows area Ĉ
(2)
0 (ϕ) =

area C
(2)
0 −[2 areab1(ϕ)+ areab2(ϕ)+ areab3(ϕ)+ areab4(ϕ)+ areab5(ϕ)].

(2.1)
The figure 2 and 9 and the relations (1.5), (1.7), (1.8) give us

area b2(ϕ) = area a2(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)(√
3 cosϕ− sinϕ

) l

4
,

area b4(ϕ) = areaa4(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)
l

2
sinϕ,

area b5(ϕ) = area a5(ϕ) =

(
a− 2b

4

)(√
3 cosϕ+ sinϕ

)
(2.2)

Then, the relations (1.3), (1.6) give

area b1(ϕ) = area a1(ϕ) −
b2

4
(2π −

√
3) =

bl sinϕ

2
− b2

4
(2π −

√
3), areab3(ϕ) =

areaa3(ϕ) −
b2

4
(2π −

√
3) =

bl

4
(
√
3 cosϕ+ sinϕ)− b2

4
(2π −

√
3).(2.3)

Replacing the expressions (2.2) and (2.3) in (2.1), we obtain

area Ĉ
(2)
0 (ϕ) = area C

(2)
0 −[bl sinϕ+

(
a− 2b− 2

√
3l sinϕ

3

)(√
3 cosϕ− sinϕ

) l

4
+

+
bl

4
(
√
3 cosϕ−sinϕ)+

(
a− 2b− 2

√
3l sinϕ

3

)
l

2
sinϕ+

a− 2b

4
(
√
3 cosϕ+sinϕ)+

−3b2

4
(2
√
π −

√
3)].

Taking in account the relation (1.9), we have

area Ĉ
(2)
0 (ϕ) = area Ĉ

(1)
0 (ϕ)+ area C

(2)
0 (ϕ)+ area C

(1)
0 (ϕ)+

3b2

4
(2π−

√
3),

that is
area Ĉ

(2)
0 (ϕ) = area Ĉ

(1)
0 (ϕ) + πb2 (2.4)

8

From the notations of the previous figure, it follows area Ĉ
(2)
0 (ϕ) =

area C
(2)
0 −[2 areab1(ϕ)+ areab2(ϕ)+ areab3(ϕ)+ areab4(ϕ)+ areab5(ϕ)].

(2.1)
The figure 2 and 9 and the relations (1.5), (1.7), (1.8) give us

area b2(ϕ) = area a2(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)(√
3 cosϕ− sinϕ

) l

4
,

area b4(ϕ) = areaa4(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)
l

2
sinϕ,

area b5(ϕ) = area a5(ϕ) =

(
a− 2b

4

)(√
3 cosϕ+ sinϕ

)
(2.2)

Then, the relations (1.3), (1.6) give

area b1(ϕ) = area a1(ϕ) −
b2

4
(2π −

√
3) =

bl sinϕ

2
− b2

4
(2π −

√
3), areab3(ϕ) =

areaa3(ϕ) −
b2

4
(2π −

√
3) =

bl

4
(
√
3 cosϕ+ sinϕ)− b2

4
(2π −

√
3).(2.3)

Replacing the expressions (2.2) and (2.3) in (2.1), we obtain

area Ĉ
(2)
0 (ϕ) = area C

(2)
0 −[bl sinϕ+

(
a− 2b− 2

√
3l sinϕ

3

)(√
3 cosϕ− sinϕ

) l

4
+

+
bl

4
(
√
3 cosϕ−sinϕ)+

(
a− 2b− 2

√
3l sinϕ

3

)
l

2
sinϕ+

a− 2b

4
(
√
3 cosϕ+sinϕ)+

−3b2

4
(2
√
π −

√
3)].

Taking in account the relation (1.9), we have

area Ĉ
(2)
0 (ϕ) = area Ĉ

(1)
0 (ϕ)+ area C

(2)
0 (ϕ)+ area C

(1)
0 (ϕ)+

3b2

4
(2π−

√
3),

that is
area Ĉ

(2)
0 (ϕ) = area Ĉ

(1)
0 (ϕ) + πb2 (2.4)

8
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From the notations of the previous figure, it follows area Ĉ
(2)
0 (ϕ) =

area C
(2)
0 −[2 areab1(ϕ)+ areab2(ϕ)+ areab3(ϕ)+ areab4(ϕ)+ areab5(ϕ)].

(2.1)
The figure 2 and 9 and the relations (1.5), (1.7), (1.8) give us

area b2(ϕ) = area a2(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)(√
3 cosϕ− sinϕ

) l

4
,

area b4(ϕ) = areaa4(ϕ) =

(
a− 2b− 2

√
3l sinϕ

3

)
l

2
sinϕ,

area b5(ϕ) = area a5(ϕ) =

(
a− 2b

4

)(√
3 cosϕ+ sinϕ

)
(2.2)

Then, the relations (1.3), (1.6) give

area b1(ϕ) = area a1(ϕ) −
b2

4
(2π −

√
3) =

bl sinϕ

2
− b2

4
(2π −

√
3), areab3(ϕ) =

areaa3(ϕ) −
b2

4
(2π −

√
3) =

bl

4
(
√
3 cosϕ+ sinϕ)− b2

4
(2π −

√
3).(2.3)

Replacing the expressions (2.2) and (2.3) in (2.1), we obtain

area Ĉ
(2)
0 (ϕ) = area C

(2)
0 −[bl sinϕ+

(
a− 2b− 2

√
3l sinϕ

3

)(√
3 cosϕ− sinϕ

) l

4
+

+
bl

4
(
√
3 cosϕ−sinϕ)+

(
a− 2b− 2

√
3l sinϕ

3

)
l

2
sinϕ+

a− 2b

4
(
√
3 cosϕ+sinϕ)+

−3b2

4
(2
√
π −

√
3)].

Taking in account the relation (1.9), we have

area Ĉ
(2)
0 (ϕ) = area Ĉ

(1)
0 (ϕ)+ area C

(2)
0 (ϕ)+ area C

(1)
0 (ϕ)+

3b2

4
(2π−

√
3),

that is
area Ĉ

(2)
0 (ϕ) = area Ĉ

(1)
0 (ϕ) + πb2 (2.4)

8



Denoting by M2 the set of the line segments s that have midpoint in
C2
0 and with N2 the set of line segments s totally contained in C2

0 , one has:

P
(2)
int = 1− µ(N2)

µ(M2)
. (2.5)

µ(M2) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈Ĉ(2)
0 }

=

∫ π

3

0
area Ĉ

(2)
0 dϕ =

π

3
area C

(2)
0 =

π

3
(

√
3a2

4
− πb2

2
) (2.6)

and, taking in account of the relations (2.4)

µ(N2) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈Ĉ(2)
0 }

dxdy =

∫ π

3

0
area Ĉ

(2)
0 (ϕ)dϕ =

∫ π

3

0
area Ĉ

(1)
0 (ϕ)dϕ+

πb2

3
.

The relations (1.12) give us

∫ π

3

0
area Ĉ

(1)
0 (ϕ)dϕ =

π

3
(

√
3

a

2

4− 3

√
3

a

2

4)− 1

4
[(a− 4b)l − (

9

4
− π

√
3

9
)l2] =

=

√
3π

12
(a2 − 3b2)− 1

4
[(a− 4b)l −

(
9

4
− π

√
3

9

)
l2],

then

µ(N2) =
√
3π(a2 − 3b2) +

π2b2

3
− 1

4
[(a− 4b)l −

(
9

4
− π

√
3

9

)
l2] (2.7)

The relations (2.5), (2.6), (2.7) give us

P
(2)
int =

(a− 3b)l −
(
9

4
− π

√
3

9

)
l2 − 4π2b2

3

π
√
3(a2 − 3b2)

(2.8)

For b → 0, by relations 1.13 and 2.8, it follows:

P
(1)
int = P

(2)
int .

9

Denoting by M2 the set of the line segments s that have midpoint in
C2
0 and with N2 the set of line segments s totally contained in C2

0 , one has:

P
(2)
int = 1− µ(N2)

µ(M2)
. (2.5)

µ(M2) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈Ĉ(2)
0 }

=

∫ π

3

0
area Ĉ

(2)
0 dϕ =

π

3
area C

(2)
0 =

π

3
(

√
3a2

4
− πb2

2
) (2.6)

and, taking in account of the relations (2.4)

µ(N2) =

∫ π

3

0
dϕ

∫ ∫

{(x,y)∈Ĉ(2)
0 }

dxdy =

∫ π

3

0
area Ĉ

(2)
0 (ϕ)dϕ =

∫ π

3

0
area Ĉ

(1)
0 (ϕ)dϕ+

πb2

3
.

The relations (1.12) give us

∫ π

3

0
area Ĉ

(1)
0 (ϕ)dϕ =

π

3
(

√
3

a

2

4− 3

√
3

a

2

4)− 1

4
[(a− 4b)l − (

9

4
− π

√
3

9
)l2] =

=

√
3π

12
(a2 − 3b2)− 1

4
[(a− 4b)l −

(
9

4
− π

√
3

9

)
l2],

then

µ(N2) =
√
3π(a2 − 3b2) +

π2b2

3
− 1

4
[(a− 4b)l −

(
9

4
− π

√
3

9

)
l2] (2.7)

The relations (2.5), (2.6), (2.7) give us

P
(2)
int =

(a− 3b)l −
(
9

4
− π

√
3

9

)
l2 − 4π2b2

3

π
√
3(a2 − 3b2)

(2.8)

For b → 0, by relations 1.13 and 2.8, it follows:

P
(1)
int = P

(2)
int .

9
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VALUE AT RISK – SECURITIES
OF PORTFOLIO OPTIMIZATION.

A GEOMETRIC BROWNIAN MOTION CASE

DANIEL ISKRA
Department of Applied Mathematics

University of Economics in Katowice

Abstract. This paper presents the optimization of securities portfolio.
Taking into account the Value at Risk the optimization concerns the
portfolio’s structure. Value at Risk (VaR) is one of the modern risk
measures. The Value at Risk is defined as follows:

( )( ) αα −=<− 1,0 tVaRSSP t ,

tSS ,0 - the initial and final instrument price or portfolio value,

( )tVaR ,α -Value at Risk on the time horizon t and the level of

acceptance α .

The author considers the strategy in which VaR of portfolio is minimized

for fixed probability level α . The portfolio contains shares. Dynamics of

shares’ prices are described by Geometric Brownian Motion. The model is
tested using empirical data. The results of empirical research are presented
in the article.

Keywords: Value at Risk, Geometric Brownian Motion, portfolio

Introduction

Risk management is an important aspect of modern finance [1,
4, 8]. Intensive research work in this field of science has brought us
many tools to risk management [1, 2, 3, 4, 6, 7]. One of the
measures of risk, which has become very popular is Value at Risk.
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The Value at Risk is defined as follows [12]:

( ) α−=<− 10 VaRSSP t , (1)

tSS ,0 - the initial and final instrument price or portfolio value,

VaR - Value at Risk on the time horizon t and the level of

acceptance α .
Value at Risk is the value where decrease of portfolio value

can be bigger then VaR with α probability for set time t. As we can
see from definition, Value at Risk is a difference between initial
value of the portfolio and proper quintile of distribution of
probability, that means, the Value at Risk depends on distribution
of probability [1, 4, 5, 8].

This paper presents the optimization of securities portfolio.
Taking into account the Value at Risk the optimization concerns
the portfolio’s structure.

The author considered the strategy in which VaR of portfolio

is minimized for fixed probability level α . The portfolio used in
the research contained shares. Dynamics of shares’ prices were
described by Geometric Brownian Motion. The model was tested
by using empirical data. The results of empirical research are
presented in the article.

Probability distribution of portfolio

Let the initial value of portfolio be greater then zero and
dynamics of share is described by Geometric Brownian Motion
with constant parameters [9, 12]:

t

t

t dWdt
S

dS
σµ += , (2)

where:

tS - price of share,

µ - drift,

σ - volatility,

tW - Wiener process.
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Let the portfolio consists of n different types of shares. If 
dynamics of shares is described by Geometric Brownian Motion 
(see formula nr (2)), then value of portfolio with its constant 

structure of the valuable ( constwi = , 1
1

=�
=

n

i

iw , { }ni ,...,2,1∈ ) is also 

to be described by Geometric Brownian Motion: 

 t

t

t dWdt
d

ΠΠ +=
Π

Π
σµ   (3) 

where: 

 �
=

Π =
n

i

iiw
1

µµ ,   (4) 

 ��
�

�
��
�

�
+= ���

= >=

Π

n

i

n

ij

ijjiji

n

i

ii www
11

22 2 ρσσσσ ,  (5) 

 
where: 

tΠ  - price of portfolio, 

Πµ  - drift of portfolio, 

Πσ  - volatility of portfolio, 

ijρ   - correlation coefficient, 

tW  - Wiener process. 

As we assumed, µ  and σ  are constant for each instrument 

( consti =µ  and consti =σ , { }ni ,...,2,1∈ ) so parameters Πµ  and 

Πσ  are constant, too. 

We can find probability distribution of the value of portfolio 
by solving Kolmogorov equation [10].  Next we can calculate the 
probability that the value of portfolio is not bigger than fixed value 

- *π  for fixed time. This probability can be described by formula: 

 
dx

t

tx

t

txXPtP

x

tt

�
∞− Π

ΠΠ

Π

−−−

=

=≤=≤Π

*

2

22

2

**

)
2

])
2

1
([

exp(
2

1
                       

),(),(

σ

σµ

πσ

π

 (6) 
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where random variable: 

  )ln(
0π
t

tX
Π

= ,  (7) 

describes logarihtmic rate of return. As it follows from the formula 

nr (6) random variable tX  has normal distribution 

N( t)
2

1
( 2

ΠΠ − σµ , tΠσ ). 

We can transform the formula nr (6) into cumulative 
distribution function of  standard normal distribution: 

 dxezN

z x

�
∞−

−

= 2

2

2

1
)(

π
,  (8) 

where: 

 
t

t

z

t

Π

ΠΠ −−

=
σ

σµ
π

π
)

2

1
()ln( 2

0 .  (9) 

For tt πππ ∆−= 0  ( tπ∆  represents the VaR – positive value 

means the fall down of the value of portfolio with relation to initial 
value of the portfolio, negative value - increase) formula nr (9) can 
be written as: 

 
t

t

z

t

Π

ΠΠ −−
∆

−

=
σ

σµ
π

π
)

2

1
()1ln( 2

0 ,   (10) 

where  
0π

π t∆
 represents  relativity value of the VaR . 

 

 

 

Value at Risk - portfolio optimization. 

 

In optimization of the portfolio strategy, taking into account 
the Value at Risk we have to select weight (wi, i={1,…,n}) so that 

the value 
0π

π t∆
 was minimal for fixed probability α . In this case 
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we have to set the value z for which distribution function of normal

distribution is equal α :

( )α1−= Nz . (11)

If we transform the equation (10) we will get the formula:

ttz
t e

)
2

1
(

0

2

1
ΠΠΠ −+

−=
∆ σµσ

π

π
, (12)

were Πµ i Πσ are described by the formulas nr (4) and (5).

In the formula (12) the expressions Πµ and Πσ depend on the

weights (wi i={1,…,n}) so expression
0π

π t∆
depends on the

weights, too. In next part of the article notation the expressions Πµ

and Πσ will be the same. Only notation of the expression
0π

π t∆

will be changed, so the formula (12) is:

ttz

n
t eww

)
2

1
(

1

0

2

1),...,(
ΠΠΠ −+

−=
∆ σµσ

π

π
, (13)

Calculating the weights for which the formula (13) is minimal,
we can get the variable structure of the portfolio where the Value at

Risk is also minimal for the fixed level of probability α
(significance level).

Estimation of parameters

In the work, the estimation of parameters of the model was
proposed by logarithmic rate of return.

If dynamics of share is described by Geometric Brownian
Motion (2), then dynamics of logarithmic rate of return of share can
be determined by Ito lema [9, 11]:

t
t dWdt

S

S
d σσµ +−= )

2

1
()ln( 2

0

. (14)
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Because:

)ln()ln()ln()ln(
000 t

dtttdttt

S

S

S

S

S

S

S

S
d ++ =−= , (15)

therefore:

t

t

dtt dWdt
S

S
σσµ +−=+ )

2

1
()ln( 2 . (16)

So, according to the above formula, logarithmic returns about

period of time dt have normal probability:

),)
2

1
(( 2

dtdtN σσµ − (17)

In this case, the estimators µ and σ (determined by the

methods of moments) are:

2

2

11
))(ln( σµ += +

dtS

S
E

t

dtt , (18)

dtS

S
D

t

dtt 1
))(ln( +=σ , (19)

where:

)(•E - expected value of the logarithmic rate of return of

share,

)(•D - standard deviation of the logarithmic rate of return of

share.

The estimator correlation coefficient is:

dt

S

S

S

S

ji

tj

dttj

ti

dtti

ij
σσ

ρ

))ln(),cov(ln(
,

,

,

, ++

= (20)

i, j – numbers of shares.
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Simulations

In the empirical research, short selling of the instruments was
not taken into consideration by the author. This fact means that the
weights of structure of the portfolio have to be positive:

0
},...,1{

≥∀
=

i
ni

w (21)

To research the author selected shares which were included in
Standard&Poor 100 Index and the stock quotes of shares were from
1990 to 2010. Shares included in the research are presented below
(shortcuts used in the stock market)

AA CVS JNJ SLB

AAPL CVX JPM SLE

ABT DD KO SO

AEP DELL LMT T

AMGN DIS LOW TXN

AVP DOW MCD USB

AXP EMC MDT UTX

BA ETR MMM VZ

BAC EXC MO WAG

BAX F MRK WFC

BHI FDX MSFT WMB

BK GD NKE WMT

BMY GE NSC WY

C HAL ORCL XOM

CAT HD OXY XRX

CL HNZ PEP

CMCSA HON PFE

COP HPQ PG

COST IBM RTN

CPB INTC S

Table nr 1. Shares included in the research (shortcut).
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Next the author has constructed one hundred portfolios which
consisted of two random chosen shares each.

In every single portfolio the variable structure was calculated
so that one day Value at Risk was minimal (by formula (13)). The

Value at Risk was predicted for probability 05.0=α . As a unit of
time the author assumed one session year (exactly 250 trading

session days) so it means that 250/1=dt .
Parameters of the model were estimated by 70, 100, 150 and

200 daily logarithmic rates of return for each share by formulas
(18) and (19). Next, the author checked if these logarithmic rates of
return used to estimate had a normal probability with estimated
parameters by Lilliefors test. In each case it was checked if the
assumptions of the model were fulfilled (it means that both shares
included in the portfolio have had a normal probability at the same
time). If yes, the forecast of VaR for next day was numbered
among the set of the samples used for VaR test. If not, the forecast
was not considered. Next to the time series with rates of return of
shares there was a new rate of return added, and the oldest one was
deleted. The whole procedure was repeated again and again.

In work, there was Kupiec test [1] and structure test used to
verify the Value at Risk with level of significance equal to 5% . The
author assumed that predicted Value at Risk was correct if both
tests did not reject null hypothesis.

Percentage of the portfolios (in which the forecast VaR was
verified positively by VaR tests) is presented in table nr 2. As we
remember, there were one hundred of all the portfolios. Forecasts
of VaR (on average more than one thousand) were calculated for
one day and level of significance equal to 5% for each portfolio.

Number of rates of return used to
estimate the parametersSignificant level used

in the Lilliefors test
70 100 150 200

αααα=0,05 56% 87% 94% 87%

αααα=0,1 76% 88% 88% 86%

Table nr 2. Percentage of portfolios in which the forecasted VaR was
verified positively by VaR tests.
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As we can see in the table, the best result was in the case 
where parameters of the model were estimated by 150 logarithmic 
rates of return. In this case, the percentage of the portfolios, in 
which VaR was calculated correctly, was about 90%.  The results 
were similar when parameters of the model were estimated by 100 
and 200 logarithmic rates of return. The worst result was obtained 
in the case when parameters were estimated by 70 ones. 

 
 
 
 

Conclusions 
 

This paper presents the optimization of the securities of 
portfolio.  Taking into account the VaR, the optimization concerns 
the valuable structure of the portfolio. Each portfolio contained two 
types of shares. Dynamics of shares’ prices were described by 
Geometric Brownian Motion. The model was tested by using 
empirical data. Parameters of the model were estimated by 70, 100, 
150 and 200 daily logarithmic rates of return.  

The key finding of the analysis is that proposed model of 
optimizing the portfolio (due to the value at risk) worked well, if 
parameters of the model were estimated by the data from the last 
six months (about six months).  The Value at Risk was consistent 
with the real loss (no significant difference) in about 90% of the 
portfolios. Estimation of the parameters of the model for shorter 
period gave worse results and for longer period the number of days 
in which the model could be used to predict VaR was smaller.  
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EVALUATION OF GLOBAL COMFORT FOR TRAIN PASSENGERS

Giovanni Leonardi – Riccardo Ferrara

Abstract. The aim of this study is to propose a method for the evaluation of railway

passengers’ comfort in relationship to temperature, noise, and vibration. Estimated

the single comfort for every sensation considered, the global comfort is evaluated

with the Hyper-Sphere Method proposed by Corriere & Lo Bosco [1]. The human-

vehicle-infrastructure-environment variables which influence comfort are

individuated. Thus their value and correspondent global comfort could be evaluated

in management strategy or predicted in design problem. The results show how to

construct the hyper-sphere in which the surface is representative of best possible

condition for human comfort and the centre represents the minimum.

Keywords: thermal comfort, vibration, noise, global comfort, hyper sphere, train

passengers, railway.

1. Introduction

The principal goal of this paper is to define an index representative of

passenger satisfaction in relation to comfort. The proposed model considers the

following three variables: temperature, noise and vibration. These three aspects

of comfort have been well documented and analysed in numerous studies.

American Society of Heating, Refrigerating and Air-Conditioning Engineers

[2, 3] studied the effects of environmental variables on thermal comfort.

Yang & Kang [4] investigated the acoustic comfort in urban open public

spaces, but without finding a good Leq/Comfort-Index correlation coefficient.

Huston, Zhao and Johnson [5] studied the dependency between comfort and

vibration frequency/amplitude but they didn’t give a method to relate comfort

with design variables.

The present study examines how human-vehicle-infrastructure-environment

variables produce noise, vibration and condition temperature influencing

passenger comfort.

2. Method

Human-vehicle-infrastructure-environment variables are split into two

different sets: the “Environment Set (E)” (including vehicle-infrastructure-

environment variables) and the “Human Set (H)” (Fig. 1).

The threshold between these sets represents the perceptive organs.

Firstly design variables must be individuated for the chosen parameters

aspects of comfort: thermal, noise and vibration.
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Then, the relationship functions: temperature/comfort-index, noise/comfort-

index and vibration/comfort-index are constructed. For every function and every 

variable, fixing all variables except one, it’s possible to define the superior 

threshold in relation with maximum comfort while all other variables are fixed 

at an inferior threshold and vice versa. The � �� variables represent � �� 

axes of the ���� space.  

 
 

Subsequently all coordinates have been normalised with maximum and 

minimum threshold calculated by eq. (2). 

�	
 � ������ � � � �� � �������� ����������������������������������� � ��� � ����
 � ������ � � � �� � �������� ��������������������������������������� � ��� � ���  (2) 

After this transformation of coordinate, a hyper-sphere (3), in which the 

surface is representative of best possible condition for human comfort and the 

centre represents the minimum, is defined: 
 �
!�" " " ���! � 	
!�" " " �	�! # $ (3) 

 

Hyper vectors satisfying equation (2) are inside the hyper-sphere and their 

module represents the Global Comfort Index – %& ' ()* $+. Once the global 

comfort vector is defined, it’s possible to evaluate the comfort index to optimize 

the best management strategy or, in design case, to chose between different planning 

alternatives. The best solution is the one that maximizes the global comfort vector 

module. 

3. Thermal comfort 

The thermal comfort is established by a man-environment energy balance [6] 

and the equation, for surface area unit, is the following: 
 , � - �./ � 0�/ � 01 � % � 2 � %/ (4) 

 

Where , is the instantaneous energy balance of human body (Table 1). 

n
H

m
E
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Table 1 

Variables introduced in eq. (4)  Variables introduced in eq. (5) 

M metabolic rate  Esw sweating heat loss 

Wk external work  rh air relative humidity 

Esk heat loss by evaporation from the skin  tmr mean radiant temperature 

Er respiration heat loss, latent and dry  
tsk skin temperature 

C 
the heat loss by convection from outer surface of 

the clothed body to air 
 Icl 

clothing, including thermal 

resistance and vapour permeability 

R 
the heat loss by radiation from outer surface of 

the clothed body to its environment 
 

Ck 
heat loss by conduction due to the contact 

skin/solid object 

 

     

 

For equilibrium and for comfort, , has to result zero. If S results less than zero, 

the body is releasing more energy than it is producing, consequentially body 

temperature tends to decrease. Some human-variables in eq. (4) could be written 

as function of environmental-variables, thus there is equilibrium if (5) is 

satisfied. 

 3�-�.� &45� 67� 8�1� 8�/� 0�9� � ) (5) 
 

Furthermore, this equation it’s in accordance with Corriere & Lo Bosco [1] 

theory of comfort-equilibrium (1). Fanger [7] studied a correlation between the 

mean value of votes given, on a seven-point thermal sensation scale (Table 2), 

by a large group of people and some environmental and human parameters. 

Thus he proposed a comfort index called Predicted Mean Vote (6).  

 :-; � �)"<)< = >�?"?@AB � )")CD� = E�- �.� � <")F G $)�@(FH<< � I"JJ =�- �.� � KL+ � )"MC(�- �.� � FD"$F+ � $"H G $)�N- = �FDIH � KL� � )"))$M =- = �<M � 8L� � <"JI G $)�O345 = (�845 � CH<�P � �8�1 � CH<�P+ � 34574 = �845 � 8L�Q  

 (6) 
 
Table 2 

Variables introduced in eq. (10)  Thermal sensation scale 

pa partial vapour pressure  + 3 Hot   

fcl ratio of man's surface area clothed/nude  + 2 Warm 
 

ta air temperature  + 1 Slightly warm 
 

tcl surface temperature of clothing  
 

0 Neutral  

hc average skin air convective heat transfer coefficient  - 1 Slightly cool  

  
 - 2 Cool 

     - 3 Cold   
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Normally in a train, during travel, people are seated, so the metabolic rate could 

be fixed as - � FD�$F�.R�! [6]. Even the external work it’s null, so ./ � ). 

The partial vapour pressure could be calculated with an empiric equation [7]: 

 S:L � 67 T :��������������������������������������������������������������������������������������������UV�:�� � �W � �! � �@X � �PX! � �NX@ � �AXP � �PUV��X�   (7) 

 

The ratio body surface/clothing can be calculated as follows: 

 345 � Y$")) � $"CJ)&45��������3Z6�&45 [ )")HD��!�\R.$")F � )"IMF&45��������3Z6�&45 ] )")HD��!�\R.  (8) 

 

where &45 depends on passenger’s clothing, and thus, on season and on external 

temperature. The average skin air convective heat transfer coefficient: 

 74 � SC"<D�845 � 8L�?"!N��������3Z6�C"<D�845 � 8L�?"!N ] $C"$^_L1$C"$^_L1����������������������3Z6�C"<D�845 � 8L�?"!N [ $C"$^_L1  �� (9) 

with: _L1 � _L � )"))F ` Babc � FD"$Fd  efg � C")C�hi�?"P!N�7i�?"j!N�� 
 

where ;L1 is the passenger relative air velocity, ;L is the air velocity, efg is the 

body surface calculated by the Dubois Area empiric equation. As height and 

weight of passengers tend to vary on a large range, reference is made to average 

values (e.g., in Italy, 7�kkkk � $"HF��*�79kkkk � $"IF��*�l 7k � $"H)��*�hm �HF�no l efg � $"DI��!�; 
The surface temperature of clothing: 

 845 � <F"H � )")CD�- �.� � &45E<"JI T $)�O345(�845 � CH<�P  �  �������������8�1 � CH<�P34574�845 � 8L� (10) 

 

Air temperature is given by the value set by the regulation of the air 

conditioning system. 

The mean radiant temperature is: 

 8�1 � p 8�qr�� (11) 
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where 8� is the temperature of the generic isothermal surface-i seeing the subject 

(a wall, a window, a piece of furniture, another person, etc.); qs�� is the view (or 

angle) factor between the subject-p and the surface-i. 

Once all variables are calculated it is possible to estimate the Predicted 

Mean Value (6). 

Finally the aim is to individuate the independent variables which could be 

controlled or varied in a train design/management problem. Looking at Table 3, 

these variables are identified with an asterisk (*): 

 

α1: thermal isolation; 

α2: air conditioning system power (capability to adjust air temperature and 

 relative humidity); 

α3:  air velocity; 

α4:  mean radiant temperature. 

 

Comfort thresholds recommended by ISO Standard 77302 [8] are :-; �(�)"F*��)"F+. It’s also possible to predict percentage of dissatisfied passengers 

(PPD) with the equation (12). 

 ::t � $)) � JF>��?"?@@N@rBuv�?"!
rBuw� (12) 

 

In PMV range between -0.5 and +0.5 the PPD varies from 0% to 10%  

 

 

Fig. 1 – Relation “predicted percentage of dissatisfied – predicted mean value”. 

Last step it’s to evaluate �x � �� � �� as viewed in first paragraph. 
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Table 3 

 

4. Noise comfort 

In a train, noises and mechanical vibrations are generated by the same source 

but the propagation is different. Noise is transmitted by air, while mechanical 

vibrations propagate through solid structures. Both are characterised by 

frequency and amplitude. Normally our ears work like a weighting filter, so the 

equivalent psychological impression induced by pure tones depends on the 

frequency. In this study, results of experiment conducted by Yamaguchi, Kato, 

Oimatsu & Saeki [9] have been revised to verify if a relationship between noise 

level and Comfort Index exists, while noise frequency are random. 

During the experiment a group of people, everyone placed at the same distance 

from the noise source, was invited to indicate in a questionnaire their 

physiological impression in a scale from 1 to 7 (Table 4). Each five seconds the 

source produced a random frequency noise with a fixed level of decibels. 
 

Table 4 - Psychological noise scale. 

�
Fi Impressions 

 

 
1 very calm 

 

 
2 quite calm 

 

 
3 slightly calm 

 

 
4 medium  

 
5 slightly noisy  

 
6 quite noisy 

 
7 very noisy 

 

The results was the frequency of index value (q�� connected to noise level 

L(dB). So Yamaguchi, Kato, Oimatsu & Saeki drew seven statistic distributions 

(one for every index value). But if it draws a single graph taking into account 

the noise level connected at the peak frequency of index value the result is in 

Fig. 2. 

PMV - Predicted Mean Vote 

depends by 

M W ta* tmr* pa fcl hc 
tcl 

fixed fixed adjustable adjustable depends by: depends by: depends by: depends by: depends by: 

0 [W/m2] 0 [W/m2] thermal, 

isolation; air 

conditioning 

system 

windows, 

places 

disposition 

T rh* Icl var ta M,W Icl, fcl, ta 

not adjustable adjustable not adjustable 
depends by depends by 

adjustable fixed� ��

  
 

 
(Design Data) e.g. air 

conditioning 

system 

(Design Data) � �  

      
va* ADU    

adjustable fixed    

�� �� �� �� �� �� ��

direction and 

velocity of 

air 

conditioned 

e.g. 1.86 [m2] 

(in average in 

Italy) �� �� ��
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Fig. 2 – Relation “comfort index – noise level”. 

Applying the Stevens’ Power Law [10], it’s possible to hypothesize a 

relationship between the magnitude of a physical stimulus and its perceived 

intensity or strength. 
 y � nz� (13) 
 

Modifying the equation, adding the minimum threshold (46 dB) and the 

minimum index value (q� � $), the regression has a very good coefficient of 

correlation 2! � )"JJDJ (eq. 14; Fig. 2).  

 Sq� � n{|/ � |/�?}� � q?����������������������������������n � )"F)* � � )"IM*�|/�? � IM�~�*�q? � $  (14) 

 

At the end it’s possible to estimate the management/design variables connected 

to the noise level, and evaluate the relative threshold as seen before. The 

variables identified are: 

 

α5: acoustic isolation; 

α6: train speed; 

α7: wheel defects; 

α8: rail defects; 

α9: twist index. 
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5. Vibration comfort 

Many comfort indexes for vibration discomfort have been developed and 

proposed in scientific literature. Most of these usually connect physic stimulus 

with the acceleration transmitted to passengers’ body. Also in this case, as in 

noise comfort, our sensations depend on amplitude and frequency. The 

acceleration has to be measured by accelerometers or predicted with a 

simulation analysis in three directions: along train motion (x-axis), vertical (z-

axis) and transversal (y-axis). Then it’s possible to evaluate comfort index using 

ISO 2631 [11] method. The three accelerations revealed, or predicted has to be 

weighted by a filter, then the root mean square values can be calculated as 

follows: 

 �91"�"�" � � 
Ww�W � �9!WwW ~8 (15) 

 

Then comfort index can be calculated as follows: 

 � � ��n���91"�"�"! � n���91"�"�"! � n���91"�"�"! (16) 

 

Comfort Index thresholds, which has the dimension of an acceleration (�R�!+, 
are: � � ()* )"F<+. 
In this case many variables which influence acceleration are the same of noise 

vibration case, just because the source of vibration is the same. Variables 

individuated are: 

 

α10: dissipation system; 

α11: train speed; 

α12: wheel defects; 

α13: rail defects; 

α14: twist index. 

 

The last step is to evaluate �x � �� � �� as viewed in the first paragraph. 

6. Conclusions 

Once all the variables and their respective thresholds are individuated, it’s 

possible to define the hyper sphere in the ���� space and the global comfort 

vector associated to design or management problems. A consideration has to be 

done concerning human variables. Even if these variables have correlation with 

comfort, especially in case of thermal comfort, they are not considered as 

216 G. LEONARDI - R. FERRARA



EVALUATION OF GLOBAL COMFORT FOR TRAIN PASSENGERS 

 

dimension of the hyper-sphere because they cannot be regulated (as seen in [3]). 

So these variables are considered as boundary conditions in thresholds 

computation, i.e. threshold have to be recalculated in every problem in 

dependency of: season, external temperature, external humidity; conditions 

which influences passengers’ wearing apparel. Concerning noise comfort, even 

if the noise frequency is relevant in determination of passenger perception, 

experimental data demonstrates that it’s possible to define a direct relationship 

between the comfort index and the waves’ amplitude, if wave frequency varies 

randomly. Vibration comfort index and noise comfort index are not influenced 

by human factors. An exception has to be done in case of night sleeper trains; in 

which passengers lie in horizontal position therefore the vibration comfort index 

is modified. 
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1 Section

Let <1 (a, b, c, d;α, β, ) be the regular lattice with fundamental cell C
(1)
0 asym-

metric trapezium is as in fig. 1, where α and β are two angles with 0 < β ≤
α ≤ π

2 and with four obstacles that are isosceles triangles different each other.

2/m 2/n

ncma

2/m 2/n

2/n
2/m

2/m 2/n

2

nm
b

2

xm
d

fig.1

1
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From this figure result the condition

a sinα = c sinβ (1)

We have

areaC
(1)
0 =

a (b + d) sinα

2
−

m2

4
sinα −

n2

4
sinβ (2)

Considering a segment s of random position and of constant length l with
l < min (a, b, c, d), we want compute the probability that this segment intersects

a side of lattice; obviously this probability is equal to probability P
(1)
int that the

segment s intersects the bounderay of the fundamental cell.
The position of the segment s is determinated by the middle point 0 and by

the angle that the segment ϕforms with the axis x

We consider the limit positions of the segment s, and let Ĉ
(1)
0 (ϕ) be the

determinated figure from these positions for a assigned value of ϕ, (fig. 2):

2/m 2/n

2/m 2/n

2/n
2/m

2/m 2/n
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3C 2C
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7a 2D

3D

4D
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fig.2

From this figure we can write:

areaĈ
(1)
0 (ϕ) = areaC

(1)
0 −

[areaa1 (ϕ) + areaa2 (ϕ) + ... + areaa8 (ϕ)] . (3)

Considering the figure:

1A

2A

1h

2/m

A

3A

2/m

l

fig.3

2
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We have:

Â1AA2 = π − α, ÂA1A2 =
α

2
, Â1A3A2 = α − ϕ,

Â3A1A2 = π −
α

2
, Â3A2A1 = ϕ −

α

2
.

The triangle ÂA2A3 give us:

m/2

sin (α − ϕ)
=

l

sin (π − α)
=

|AA3|

sinϕ

From here follow the relation:

m sin α = 2l sin (α − ϕ) (4)

and similarly

|AA3| =
l sin ϕ

sinα
then

|A1A3| =
l sinϕ

sinα
−

m

2
and

h1 = |A1A3| sin (α − ϕ) =

(
l sin ϕ

sinα
−

m

2

)
sin (α − ϕ) ,

hence

areaa1 (ϕ) =

(
l sin ϕ

sinα
−

m

2

)
l

2
sin (α − ϕ)

The figure:

2h

3A

'A

2B

3B

2/l

fig.4
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give us

̂A3B2B3 = α − ϕ, h2 =
l

2
sin (α − ϕ)

and

|A3B2| = a − |AA3| −
m

2
= a −

m

2
−

l sinϕ

sinα

hence

areaa2 (ϕ) = .

(
a −

m

2
−

l sinϕ

sinα

)
l

2
sin (α − ϕ) (5)

Considering the figure:

Fig 5 

3h

2

l

2/m

2B

3B

4B

1B

fig.5

From here follow that:

B̂B1B2 =
π

2
−

α

2
, B̂2B1B4 = π −

(
ϕ +

π

2
−

α

2

)
=

π

2
− ϕ +

α

2
,

h3 =
l

2
sin

(π

2
− ϕ +

α

2

)
=

l

2
cos

(
ϕ −

α

2

)

and hence:

|B1B2| = m sin
α

2
,

we have

areaa3 (ϕ) =
ml

2
cos

(
ϕ −

α

2

)
sin

α

2
. (6)

For m → n and α → π−β we have the area areaa3 (ϕ) → areaa2 (ϕ) , hence

4
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areaa7 (ϕ) =
nl

2
cos

(
ϕ −

π − β

2

)
sin

π − β

2
,

therefore

areaa7 (ϕ) =
nl

2
sin

(
ϕ +

β

2

)
cos

β

2
. (7)

The figure:

1C

l

2/n

4C

5C

C
3C 2/n

5h

fig.6

give us:

ĈC4C3 = π − ϕ − β, h5 = l sinϕ, |C3C5| = l cos ϕ,

On the other hand, therefore

|CC5| = h5 cot β = l cot β sinϕ,

we have

|CC3| = l (cos ϕ + cot β sinϕ) , (8)

hence

areaCC3C4 =
l2

2
(cos ϕ + cot β sinϕ) sinϕ =

l2

4
[sin 2ϕ + cot β (1 − cos 2ϕ)]

and considering that:

areaCC1C2 =
n2

8
sinβ,

follow that

5
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areaa5 (ϕ) =
l2

4
[sin 2ϕ + cot β (1 − cos 2ϕ)] −

n2

8
sinβ. (9)

Considering the figure:

4h

1B

4B

2

l

4C

3C

fig.7

and the relations (9) follow that:

|B1C3| = b −
m

2
− |CC3| = b −

m

2
− l (cos ϕ + cot β sinϕ) .

then

h4 =
l

2
sin ϕ,

hence

areaa4 (ϕ) =
[
b −

m

2
− l (cos ϕ + cot β sinϕ)

] l

2
sinϕ (10)

For m → n and α → π − β, from the relation (1) follow that a = c and we
have areaa2 (ϕ) → areaa6 (ϕ), hence

areaa6 (ϕ) =

(
c −

n

2
−

l sinϕ

sinβ

)
l

2
sin (ϕ + β) =

(
c −

n

2

) l

2
(sinϕ cos β + sinβ cos ϕ) −

l2

4
[sin 2ϕ + cot β (1 − cos 2ϕ)] . (11)

and, then h5 = l
2 sinϕ, follow that:

areaa5 (ϕ) = (b − c cos α − l cos ϕ)
l

2
sinϕ. (12)

The figure:

8h

'A

2A

2

l

1D

4D

DA 2/n 2/n

6
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fig.8

give us

|A2A1| = d −
m + n

2
, h8 =

l

2
sinϕ,

hence:

areaa8 (ϕ) =

(
d −

m + n

2

)
l

2
sinϕ =

(
d −

n

2

) l

2
sinϕ −

ml

4
sinϕ,

Considering of (4),

areaa8 (ϕ) =
(
d −

n

2

) l

2
sinϕ −

l

2
[sin 2ϕ − cot α (1 − cos 2ϕ)]

Replacing in the (3) the expressions (5), (6), (7), (8), (10), (11), (12) and
(13), we obtain:

areaĈ
(1)
0 (ϕ) = areaC

(1)
0 − (13)

{(
l sinϕ

sinα
−

m

2

)
l

2
sin (α − ϕ) +

(
a −

m

2
−

l sin ϕ

sinα

)
l

2
sin (α − ϕ)+

ml

2
cos

(
ϕ −

α

2

)
sin

α

2
+

nl

2
sin

(
ϕ +

β

2

)
cos

β

2
+

l2

4
[sin 2ϕ+

cot β (1 − cos 2ϕ)] −
n2

8
sinβ +

[
b −

m

2
− l (cos ϕ + cot β sinϕ)

] l

2
sinϕ+

(
c −

n

2
−

l sinϕ

sinβ

)
l

2
sin (ϕ + β) +

(
d −

n

2

) l

2
sin ϕ−

l2

4
[sin 2ϕ − cot α (1 − cos 2ϕ)]

}
=

areaC
(1)
0 −

{(
2a −

m

2

) l

2
cos ϕ +

(
b + d +

m

2
cos α −

n

2
cos β

) l

2
sinϕ−

l2

4

[
2 sin 2ϕ + (cot β − cot α)

1 − cos 2ϕ

2

]
−

n2

8
sinβ

}
.

Denoting with M1 the set of segments s that intersects a side of the funda-
mental cell and with N1 the set of segments s whose the middle point are in
Ĉ0 (ϕ) and with N the set of segments s completely contained in the fundamen-
tal cell we have:

P
(1)
int = 1 −

µ (N1)

µ (M1)
, (14)

where µ is the Lebesgue measure in Euclidean plane.

7
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The measures µ (M1) and µ (N1) we compute using the Poincaré kinematic
measure [1]

dK = dx ∧ dy ∧ dϕ,

where x, y are the coordinates of middle point 0 of the segment s and y the
defined angle.

Since ϕ ∈ [0, α], we have:

µ (M1) =

α∫

0

dϕ

∫∫

n
(x,y)∈C

(1)
0

o
dxdy =

α∫

0

[
areaC

(1)
0

]
dϕ = αareaC

(1)
0 . (15)

and, considering the (14),

µ (N1) =

α∫

0

dϕ

∫∫

n
(x,y)∈ bC(2)

0 (ϕ)
o

dxdy =

α∫

0

[
areaĈ

(1)
0 (ϕ)

]
dϕ =

αareaC
(1)
0 −

{(
2a +

m

2

) l

2
sinϕ −

(
b + d +

m

2
cos α −

n

2
cos β

) l

2
cos ϕ−

l2

4

[
− cos 2ϕ + (cot β − cot α)

ϕ − sin 2ϕ
2

2

]
−

n2ϕ

8
sinβ

}
=

α cos C
(1)
0 −

{(
2a −

m

2

) l

2
sinα +

(
b + d +

m

2
cos α −

n

2
cos β

) l

2
(1 − cos α)−

l2

4

[
1 − cos 2ϕ +

cot β − cot α

4
(2α − sin 2α)

]}
. (16)

The formulas (15), (16) and (17) give us that:

P
(1)
int =

1

α
[

a(b+d) sin α

2 − m2

4 sinα − n2

4 sinβ
]

{(
2a −

m

2

) l

2
sinα+

(
b + d +

m

2
cos α −

n

2
cos β

) l

2
(1 − cos α)−

l2

4

[
1 − cos 2ϕ +

cot β − cot α

4
(2α − sin 2α)

]}
. (17)

When α → π
2 and β → π

2 , m → 0, n → 0 we c = a, d = b, the cell C
(1)
0

becames a rectangle with side a and b and the probability (18) becomes the
Laplace probability:

P =
2 (2a + b) l − l2

2πab
.

8
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Abstract. Screening and diagnostic mammography are the most effective
tools available for detection and diagnosis of breast cancer. In the last
decade many techniques based upon measures of the shape of the contours
of breast masses are been developed to investigate the nature of lesions
between malignant tumours and benign masses. This paper presents
methods for statistical analysis on a data set of 192 contours of breast
masses. Results of these analysis lead to levels of accurate prediction in
90% of the cases, overcoming 98% for the diagnosis of malignant lesions.
In this study we applied multivariate statistical techniques for examining
relationships among more variables at the same time. We used in addition
to the shape factors of contour masses also the age of the patients at the
time of mammography, using both ROC analysis and segmentation
analysis through Classification and Regression Tree.

1 Introduction.

Recent studies have shown that early detection through
mammographic screening of asymptomatic women reduce breast
cancer mortality. The true-positive and false-positive rates of
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mammography vary in different age groups; the sensitivity of
mammography is higher in women older than 50 years [1].
Mammography is the best method available for early detection of
breast cancer. In order to assess a contour mass on mammograms,
shape parameter are taken into consideration. On the basis of the
notable shape differences we can distinguish between benign
masses and malignant tumours. These observations have led to the
idea of applying the concept of fractal dimension (FD) to analyze
the contours of breast lesions [2]. Fractal analysis can characterize
the degree of complexity of a contour or shape, and can provide
parameters to discriminate between benign masses and malignant
tumours [3].

In [3] we studied a data set of 192 mammograms were
obtained from 192 patients at the Senology Unit, San Paolo
Hospital, Bari, Italy, ASL Ba/4. The patients were diagnosed to
have breast disease via screen-film mammography and confirmed
from histological data; 163 of the cases were malignant and 29
were benign. The most useful mammographic projections were
selected to analyze the contours of lesions. During an initial phase,
contours of the present mammary lesions on the film images were
traced by a team of radiologists specialized in mammography and
successively, by a graphic tablet, we obtained a digital
representation of the contour using Matlab software. Furthermore,
we reported on a morphological study of 192 contours, with the
aim of discriminating between benign masses and malignant
tumours. From the contour of each mass, we computed the fractal
dimension (FD) and a few shape factors, including compactness, 3
fractional concavity, and spiculation index. We calculated FD by
using four different methods: the ruler and box-counting methods
applied to each 2-dimensional (2D) contour and its 1-dimensional
signature. Analysis using receiver operating characteristics (ROC)
was performed with each shape feature to determine the diagnostic
accuracy achievable in order to discriminate between benign
masses and malignant tumours. ROC analysis indicated the area
under the curve, Az, of up to 0.92, having the individual shape
features. The combination of compactness, FD with the 2D ruler
method, and the spiculation index had as result in the highest Az

value of 0.93.

The data set, the shape features calculated for all data and the
results obtained in the previous work [3], are used in this paper to
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implement a different algorithm called CRT to have binary
statistical classification of the variables (shape features). In
addition to the shape factors of mass contours we introduced also
the age of the patients at the time of mammography.

1.1 Fractal dimension and shape factors.

Fractals are irregular figures, and can be generated by the
iteration of linear or nonlinear functions [4, 5]. Sometimes they are
self-similar, and have a fine structure which reveals new details at
every level of magnification [4]. In order to measure the degree of
complexity or irregularity of a fractal, the concept of FD was
introduced; this concept is derived from the more general notion of
the Hausdorff dimension [6]. Cancerous tumours exhibit a certain
degree of randomness associated with their growth, and are
typically irregular and complex in shape. The degree of irregularity
of the contour of a mass is the first parameter assessed: benign
masses are often smooth, rounded, well-circumscribed, whereas a
malig- 4 nant tumour is often characterized by an irregular contour
with the spicules, that could be considered as a fractal pattern.
Therefore, fractal analysis can provide a better measure of complex
patterns. The Hausdorff dimension generalizes the concept of the
self-similarity dimension in the sense that it is applicable to any set
of the plane, and therefore, to a fractal set that is not strictly self-
similar. The difficulties involved in defining the Hausdorff
dimension have led many authors to find alternative methods for
estimating FD. The common numerical methods are the box-
counting and the ruler methods, which have been extensively
described in the literature [6, 2].

On the basis of the differences in shape between benign
masses and malignant tumours, various measures can be associated
with a contour or curve: these are the so-called shape factors, which
have proven to be effective in describing shapes in many research
fields, in particular in the medical field [2, 7]. The shape factors
used are compactness cf, fractional concavity fcc, spiculation index
SI; these measures have been proven to be effective in the
classification of breast masses [8, 2, 9, 7]. See Rangayyan and
Nguyen [2] and Rangayyan [7] for details on the shape factors.
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Compactness is defined as [7] 
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P
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π
−=  (1) 

where P and A are the perimeter and the area of the contour, 
respectively. A high compactness value indicates a long perimeter 
enclosing a small area. Fractional concavity is defined as [8, 7] 
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where CC represents sum of the lengths of the concave segments of 
the contour and L is the total length of the contour. Spiculation 
index is defined as 
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 where nθ  and nS  are the narrowness angle and the spicule length, 

respectively. 
 
 

1.2 Statistics method: CRT algorithm. 
 

The segmentation analysis allows researchers to determine 
(starting from a learning sample [10] of n independent units whose 
determinations are known in both dependent and explanatory 
variables) a classification rule able to divide the population in 
groups as homogeneous as possible inside them. Such rule will also 
be able to estimate the probability to detect a specific response, for 
other cases with unknown values of dependent variable but 
predictors with known determinations [11, 12]: in our case, the 
distribution of patients with unknown type of lesion (benign / 
malignant), based on some combinations of predictors. The 
segmentation analysis, in itself, is a recursive computing method 
which has some conceptual similarity with the cluster analysis: in 
both the methods will define some groups of observations which 
are homogeneous within the group and different from those of 
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other groups. Their basic principles, however, are different: the
cluster analysis joins together the individual units sampled in
groups according to all the considered variables, with the constraint
of minimum variability “within” and maximum variability
“between”, without any constraints of hierar- 6 chy or dependence
[13, 14]. The segmentation analysis, instead, divides a sample in
aggregates which are more and more internally homogeneous with
respect to a dependent variable, based on the values assumed by
other variables, taken as explanatory, and on the relations between
such variables and the dependent ones [13]. The best segmentation
among all possible ones, based on the combination of different
predictors, is that one that best meets the criteria of internal
homogeneity of the groups generated (also known as “purity” [10]).
Ideally, all cases of an final node should have the same value as the
dependent variable (maximum purity). There are several methods
of segmentation, but currently the most used are, among the
algorithms of binary division, the CRT method [10, 15], and the
CHAID type [16] among ternary or multiple algorithms.

2 Results and discussion.

The combined use of the shape parameters in [3] led to slight
improvements in terms of accuracy: the combination of FD
calculated using the 2D ruler method with cf and SI gave the
highest Az of 0.927. However, the combinations do not have a
significant difference between one another. Nevertheless, in this
work, we show that the conditioned combination of such factors
can give us further information. Applying a segmentation analysis
to data set (through CRT algorithm), we obtain classification trees
that analyze the phenomena in the best way. The best result
involves, in various combinations, (see Figure 1), both FD-2D
calculated with ruler method and SI, as well as FD-1D calculated
with the same method and age at diagnosis: i.e., women with
SI>0.232 and age > 45, 5 years in the 98, 6% of analyzed cases
have malignant lesions, but the disease probability is clearly lower
(<52%) in women which SI is < 0.232 (none of those aged 7 < 50.5
years presents malignant lesions). Stopping the algorithm to first
levels, the correct classification is near 91%, but further levels of
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the analysis drive us to predict true positives and true negatives in
96% of the cases, with most capability in the analysis of the
malignant disease (98%) than of benign masses (83%) (see Table 1,
Table 2). Robustness of the algorithm showed in figure
(classification tree) is sufficient: the jackknife re-sampling method
(100 different sub-samples with half number of cases) give a
maximal error risk < 0.12.

Figure 1: Segmentation Tree.
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Table 1: Growing Method: CRT. Dependent Variable: Benign/Malignant.

Indipendent Variable Importance
Normalized
Importance

Spiculation Index 0.138 100.0%

FD-ruler 2D 0.137 99.3%

Compactness 0.125 90.6%

FD-ruler 1D 0.100 72.5%

FD-box 1D 0. 082 59.5%

FD-box 2D 0.081 58.7%

Fractional

Concavity
0.055 39.8%

Age 0.047 34.1%

Table 2: Growing Method: CRT. Dependent Variable: Benign/Malignant.

Observed
Predicted

B N Percent Correct

B 24 5 82.8%

M 3 160 98.2%

Overall Percentage 14.1% 85.9% 95.8%
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UN PROBLEMA DI TIPO BUFFON

PER UN RETICOLO IRREGOLARE

ALESSANDRA ROMOLO

SUNTO. In questo lavoro si considera un reticolo irregolare la cui cella

fondamentale è rappresentata nella figura 2 e si calcola la probabilità che un

segmento di posizione aleatoria e di lunghezza costante intersechi un lato del

reticolo.

1 Trattazione

Consideriamo la figura

Fig. 1.

Posto

(1) hRQFRSPASaCDaAF ,2,

risulta

(2)

.ctg2,ctg2

,
sin

,
sin

,
2

3

hDQhCP

h
EFDE

h
BCAB

a
BE

Con questi valori, possiamo scrivere

),ctgctg(2 haa

quindi

(3) .
)sin(2

sinsina
h

Allora

UN PROBLEMA DI TIPO BUFFON PER UN RETICOLO IRREGOLARE 237RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Suppl. 83 (2011), pp. 237-248
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)sin(2
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EDEF
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Consideriamo ora il reticolo ,con,;aR la cui cella fondamentale

C0 è rappresentata nella figura

Fig. 2.

Gli otto ostacoli sono triangoli isosceli di lati m / 2.

Indicando con O1 l’ostacolo A A1 A3, con O2 l’ostacolo B B2 B3, con O3

l’ostacolo F F1 F2 e con O4 l’ostacolo E E1 E5, abbiamo

(5) .sin
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Ugualmente si ha
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Dalla figura 2 e dalle relazioni (3) e (5), segue
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(8) )sin(sin
2)sin(2

sinsin3 22
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ma
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Consideriamo ora un segmento s di posizione aleatoria e di lunghezza

costante l
a

2
m; vogliamo determinare la probabilità che il segmento s

intersechi un lato del reticolo, cioè la probabilità Pint che il segmento s

intersechi un lato della cella fondamentale C0.

La posizione del segmento s è determinata dal suo punto medio O e

dall’angolo che esso forma con il lato CD (o BE) della cella C0.

Per calcolare la probabilità Pint consideriamo dapprima le posizioni limite del

segmento s per un valore prefissato di situate in )1(
0C e poi le posizioni limite

di s per lo stesso valore di , situate in )2(
0C (fig.3).

Fig. 3.

Indicando con )(ˆ )1(
0C il poligono determinato dalle posizioni limite di s nel

primo caso e con )(ˆ )2(
0C il poligono determinato dalle posizioni limite di s nel

secondo caso, la figura 3 ci dà
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Per calcolare )(area 1a , consideriamo la figura

Fig. 4.
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e le relazioni (4) e (11) ci danno :
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GEOMETRIC PROBABILITY OF THE LENGHT OF A

CHORD FOR AN ARBITRARY REGULAR POLYGON

LOREDANA SORRENTI

Abstract: Let Ra be the lattice of Buffon. For a “small” con-
vex body P (a regular polygon with n edges) placed with random
position in the Euclidean plane E2, we give formulas for the prob-
ability ps that P intercepts a line segment of length at least equal
to s on a line of the lattice Ra. As an application we obtain the
distribution of secants in P , i.e. we determine the function F ,
which assigns to each real number s, the probability, that any
secants in P has a length less or equal than s.

AMS 2000 Subject Classifications: Geometric probability,
stochastic geometry, random sets and random convex sets.
AMS Classification: 60D05, 52A22.

1. Introduction

Let Ra be the lattice of Buffon, s a real number. The Buffon problem
of calculating the probability that a “small” convex polygon P in the Eu-
clidean plane E2 intercepts a line segment of length at least equal to s on
a line of the lattice Ra (strips of constant width a), has been studied for
special classes of regular polygons. In particular the problem is solved if P
is an equilateral triangle, a square, a pentagon or an hexagon, in [5], [8],
[9] and [1] respectively. There exists some recent bibliography, in which,
the problem is studied in case P is a non regular polygon, such as a non
regular triangle, a rectangular trapezium or an isosceles trapezium (see [3],
[4], [10]).
The purpose of this paper is to generalize the results of [5], [8], [9] and [1],
considering an arbitrary “small” regular polygon of constant side placed at
random on the Euclidean plane E2 as test body.
In the Euclidean plane E2 let Ra be a lattice of parallel equidistant lines
with distance a. Let P be a random regular polygon with constant side l,
and number of edges equal to n. We say P is “small”, in the sense given in
[2], if l

sin(π
n
) < a. For any fixed 0 ≤ s ≤ l

sin(π
n
) we compute the probability

ps that P intercepts a line-segment of length at least equal to s on a line
of the lattice Ra. As an application, we give a contribution to the problem

1
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of determining the distribution function of a chord in a polygon P, which
is also studied in [6] and in [7].

2. Main Results

Let F be a strip with constant width a
2 such that one distinguished

straight line g of the lattice Ra is one of the two connected components
of the border of F . We take F as the elementary tile of Ra. We assume

a

6

?
a

?
6?6
6F

g

a
2
a
2

-

-

-

Ra

?

6

Figure 1

that the straight lines of Ra and the polygon P to be oriented as shown in
figure 2.

-

�

ϕ

R

6

y

1

P S

Figure 2

If the barycenter S of P is fixed, we obtain, for symmetry reasons, all
positions of P, with respect to Ra, exactly once, if the angle ϕ between
one distinguished oriented side of P and the direction of g varies between 0
and π

n
. To simplify matters we call ϕ the angle of P. Let from now on also

ϕ ∈
[

0, π
n

]

be fixed. We denote by xs(ϕ) the distance between two parallel
chords of P, with length s. Obviously only the chords between these two
chords have length greater or equal than s. We note that xs(ϕ) = 2hs(ϕ),
where hs(ϕ) is the distance between the barycenter S of P and the line g,

2
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intercepting on P a chord with length s. In order to compute the desired
probability ps we use Stoka’s [11] well known formula:

ps =

∫ π

0 xs(ϕ)dϕ
∫ π

0 adϕ
. (1)

Since we want to consider each possible position of P we should take ϕ ∈
[0, π], but for the existing symmetries we can consider ϕ ∈

[

0, π
n

]

. Then,
instead of (1) we may use the following:

ps =

∫

π

n

0 xs(ϕ)dϕ
∫

π

n

0 adϕ
. (2)

In the following we compute the probability that a regular convex polygon
with constant side l, and with number of edges equal to n, intersects one
line segment with length at least s, where s is a real number s ≤ l.

Theorem 1. The probability that a random polygon P with constant side l

and number of edges equal to n, uniformly distributed in a bounded region

of the euclidian plane, intersects one line segment with length at least s ≤ l

of the Buffon grid Ra is:

ps =
nl

πa
− ns

πa
sin2

π

n
− sn

2πa
cos

2π

n
+

s

a
cot

2π

n
. (3)

Proof. We note that, for ϕ ∈
[

0, π
n

]

, hs(ϕ) is as in figure 3.

-
ϕ

s

S

hs(ϕ)

P

Figure 3

Then

xs(ϕ) = 2l sinϕ+
l

sin π
n

cos
(π

n
+ ϕ

)

− 2s sinϕ cosϕ+ (4)

+2s sin2 ϕ cot
2π

n
.

Therefore
∫ π

n

0
xs(ϕ)dϕ = l − s sin2

π

n
− 1

2
cos

2π

n
+

sπ

n
cot

2π

n
. (5)

3

GEOMETRIC PROBABILITY OF THE LENGHT OF A CHORD, ... 251



Finally, it follows from formulas (2) and (5), the desired probability (3).
�

Remarks 2. (a) If s = 0 the probability ps (that a random regular
polygon of constant side l with the condition l

sin π

n

< a intersects

the lattice Ra) becomes ps =
per(P)
πa

, where per(P) is the perimeter
of the polygon P.

(b) If n = 3, then formula (3) returns Duma and Stoka’s formula [5]

ps =
3l

πa
− 3s

2πa
− 3

√
3

3a
, (6)

which computes the probability that a regular triangle with side l,
intersects on Ra a segment with length at least s.

(c) If n = 4, then formula (3) returns Pettineo’s formula [8]

ps =
4l

πa
− 2s

πa
, (7)

which computes the probability that a square with side l, intersects
on Ra a segment with length at least s, with s ≤ l.

(d) If n = 5, then formula (3) returns the following formula, given by
Theorem 3.1 in [9],

ps =
5l

πa
− 5s

2πa
+

s

a

√

25− 10
√
5

5
, (8)

which computes the probability that a regular pentagon with side
l, intersects on Ra a segment with length at least s, with s ≤ l.

(e) If n = 6, hen formula (3) returns Conserva and Duma’s formula [1],

ps =
6l

πa
− 3s

πa
+

s

a

√
3

3
, (9)

which computes the probability that a regular hexagon with side l,
intersects on Ra a segment with length at least s, with s ≤ l.

(f) We note that when n → ∞, the side l of P tends to 0, P is a circle
and nl → 2πr, where r is the radius of P. In such case, with the
limitation given for s in Theorem 1, we obtain s = 0. Then

lim
n→∞

ps = lim
n→∞

(

nl

πa
− ns

πa
sin2

π

n
− sn

2πa
cos

2π

n
+

s

a
cot

2π

n

)

= (10)

=
2r

a
,

which is the probability that a circle with radius r < a
2 intersects

one of the parallel lines of Ra.

Now we compute the probability that a regular convex polygon with
constant side l, and with number of edges equal to n, intersects one line

4
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segment with length at least s, where s is a real number l ≤ s ≤ 2l cos π
n
. If

l ≤ s ≤ 2l cos π
n
, we denote by ϕ0 ∈

[

0, π
n

]

the angle satisfying the following
condition:

sin

(

2π

n
− ϕ0

)

=
l

s
sin

2π

n
. (11)

With this notation, we obtain the following result.

Theorem 3. The probability that a random polygon P with constant side l

and number of edges equal to n, uniformly distributed in a bounded region

of the euclidian plane, intersects one line segment with length at least l ≤
s ≤ 2l cos π

n
of the Buffon grid Ra is:

ps =
ns

πa

(

− sin2
π

n
− 1

2
cos

2π

n
+ sin2 ϕ0 +

1

2
sinϕ0 cot

2π

n
+ (12)

−ϕ0 cot
2π

n

)

+
s

a
cot

2π

n
+

nl

πa

(

cosϕ0 − cot
π

n
sinϕ0

)

, if n ≤ 4;

ps =
nl

πa

(

cosϕ0 + sinϕ0 tan
2π

n

)

+
sn

πa

(

1

2
cot

4π

n
sin 2ϕ0 + (13)

− sin2
π

n
− 1

2
cos

2π

n
+

π

n
cot

2π

n
+ sin2 ϕ0 − ϕ0 csc

4π

n

)

, if n > 4.

Proof. We first consider the case n ≤ 4.
We note that if ϕ ∈ [0, ϕ0], where ϕ0 is the angle defined by (11), then
hs(ϕ) = 0. If ϕ ∈

[

ϕ0,
π
n

]

, we have (see figure 4)

-

S

hs(ϕ)
P

ϕ

Figure 4

xs(ϕ) = 2l sinϕ+
l

sin 2π
n

cos
(π

n
+ ϕ

)

2s sinϕ cosϕ+ 2s sin2 ϕ cot
2π

n
. (14)

5
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Thus
∫ π

n

0
xs(ϕ)dϕ =

∫ ϕ0

0
xs(ϕ)dϕ+

∫ π

n

ϕ0

xs(ϕ)dϕ =

= −s sin2
π

n
− 1

2
s cos

2π

n
+

π

n
s cot

2π

n
+ 2l cosϕ0 + s sin2 ϕ0 +

− l

sin π
n

sin
(

ϕ0 +
π

n

)

+
1

2
s sin 2ϕ0 − ϕ0s cot

2π

n
. (15)

Then, by substituting (15) in (2), one can obtain formula (12).
Now, assume that n ≥ 4.
In this case we note that if ϕ ∈ [0, ϕ0], we have (see figure 5)

-

ϕ

s

S

hs(ϕ)

P

Figure 5

xs(ϕ) = l cot
π

n
cosϕ+ l tan

2π

n
cosϕ− s

(

tan
2π

n
cos2 ϕ+

− cot
2π

n
sin2 ϕ

)

. (16)

If ϕ ∈
[

ϕ0,
π
n

]

, we obtain again formula (4) for xs(ϕ).
Thus
∫ π

n

0
xs(ϕ)dϕ =

∫ ϕ0

0
xs(ϕ)dϕ +

∫ π

n

ϕ0

xs(ϕ)dϕ =

=
s

2
sinϕ0 cosϕ0 cot

(

2π

n

)

+
sπ

n
cot

(

2π

n

)

+

− sϕ0

2
cot

(

2π

n

)

− s

2
sinϕ0 cosϕ0 tan

(

2π

n

)

+

− sϕ0

2
tan

(

2π

n

)

− l sinϕ0 tan

(

2π

n

)

+ l sinϕ0 cot
(π

n

)

+

+ l cosϕ0 + s sin2(ϕ0)−
s

2
. (17)

Then, by substituting formula (17) in (2), one can obtain formula (13).
�

6
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Remarks 4. (a) If s = l then ϕ0 = 0 and formulas (12), (13) and (2)
coincide.

(b) If n = 4 then, it follows from formula 12 that ϕ0 = arccos
(

l
s

)

and

ps =
2s

πa
− 4l sinϕ0

πa
,

which is Pettineo’s formula [8] which computes the probability that
a square with side l, intersects on Ra a segment with length at least
s, with l ≤ s ≤ l

√
2.

(c) If n = 6 then formula 13 returns Conserva and Duma’s formula [1],

ps =
12

πa

[

l sin
(

ϕ0 +
π

6

)

+
s

2
√
3

(π

6
− 2ϕ0

)

− s

2
√
3
cos

(π

6
− 2ϕ0

)

]

,

which computes the probability that a regular hexagon with side l,
intersects on Ra a segment with length at least s, with l ≤ s ≤ l

√
3.

(d) We note that when n → ∞, the side l of P tends to 0, P is a circle
and nl → 2πr, where r is the radius of P. In such case, with the
limitation given for s in Theorem 3, we obtain s = 0. Then

lim
n→∞

ps = lim
n→∞

[

nl

πa

(

cosϕ0 + sinϕ0 tan
2π

n

)

+ (18)

sn

πa

(

1

2
cot

4π

n
sin 2ϕ0 − sin2

π

n
− 1

2
cos

2π

n
+

+
π

n
cot

2π

n
+ sin2 ϕ0 − ϕ0 csc

4π

n

)]

=
2r

a

which is the probability that a circle with radius r < a
2 intersects

one of the parallel lines of Ra.

3. The distribution of secants in P

The distribution function F of the chord in the polygon P, assigns to
each s ∈ [0, l] the probability that an arbitrary chord in P has a length less
or equal than s and it is defined as follows:

F (s) = 1− ps

p0
. (19)

As a consequence of Theorem 1 and Theorem 3 we obtain the following.

Corollary 5. The distribution function of the chord of the polygon P,

which assigns to each s ∈
[

0, 2l cos π
n

]

the probability that an arbitrary chord
7
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in P has a length less or equal than s is given by:

F (s) = s
l
sin2 π

n
+ s

l
cos 2π

n
− sπ

nl
cot 2π

n
, if s ≤ l;

F (s) = 1
4ln cos π

n
sin(ϕ0+

π

n
)

(

ns sin 2π
n
cos 2ϕ0+

−(2nϕ0 − 2π) cos 2π
n
+

+n sinϕ0 cos
2π
n

)

, if l ≤ s ≤ 2l cos
π

n
, n ≤ 4;

F (s) = −s

l(cosϕ0+sinϕ0 tan
2π

n
)

(

1
2 cot

4π
n
sin 2ϕ0+

− sin2 π
n
− 1

2 cos
2π
n

+ π
n
cot 2π

n
+

+sin2 ϕ0 − ϕ0 csc
4π
n

)

, if l ≤ s ≤ 2l cos
π

n
, n > 4.

Proof. The assertion follows from (19), Theorem 1 and Theorem 3. �

We note that the function F does not depend on the distance a between
two lines of the lattice Ra The density f = F ′ of the distribution of the
chord is a constant function in case s ≤ l (Theorem 1), but it is not a
constant function in case l < s ≤ 2l cos π

n
(Theorem 3), since ϕ0 is a non

linear function of s.
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Abstract. The constant proportion portfolio insurance (CPPI) strategy is one 
of the strategies the main aim of which is to protect the minimum value of the 
investor’s portfolio. That strategy is one of the active strategies – each 
changing in prices causes modifications in the portfolio structure. The CPPI 
strategy is used by some mutual funds that operate at the Polish stock market. 
It is important to check if that strategy is efficient in the Polish market in a 
long time. It will be checked after implementing the CPPI strategy to the 
portfolio of the WIG20 index.  

 

Key words: CPPI strategy, Warsaw Stock Exchange, portfolio management, 
portfolio efficiency 

 

 

 

1. The constant proportion portfolio insurance strategy. 

 

The CPPI strategy is one of the portfolio insurance strategies. The 
main aim of the portfolio insurance strategies is to protect the 
minimum value of the investor’s portfolio. Description of the CPPI 
strategy can be found in articles: F.Black, R.Jones (1987), F.Black, 
R.Jones (1988), A.F.Perold, W.F.Sharpe (1988), R.R.Trippi, 
R.B.Harriff (1991). The main aim of the CPPI strategy is to protect a 
value of the portfolio against the decrease under the floor value. The 
floor value of the portfolio is set by the manager and is less than the 
initial value of the portfolio. The floor value can increase at the 
interest rate over time. 
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In order to achieve the aim of the strategy, the portfolio is divided

into two parts. One part is invested in active assets, while the second

part is invested in reserve assets. The active assets, which are usually

stocks, put risk into the portfolio. The reserve assets, which are

usually T-bills or bonds, protect value of the portfolio at the level of

the floor.

Definition of key concepts:

F - floor – the lowest value of the portfolio,

m - multiplier – set by investor, it determines the part of the

portfolio invested in active assets,

c - cushion – a portfolio value minus the floor,

e - exposure – a part of the portfolio invested in active assets,

t - tolerance – a percentage change of the active assets that

triggers the trade,

l - limit – a minimum part of the portfolio invested in active

assets.

In order to calculate the exposure it is used as follows:

( )fportfoliomcme −⋅=⋅= (1)

If the value of active assets increases, the value of the portfolio

also increases and it means that the cushion increases as well. As the

result, the exposure grows (because of the multiplier) and more active

assets are bought into the portfolio. The final result of the active

assets’ growth is a rise of the portfolio’s risk.

If the value of active assets decreases, the value of the portfolio

also falls, the difference between portfolio value and the floor declines

and it means that the cushion also decreases. As the result, the

exposure falls (because of the multiplier) and some active assets are

sold. The final result of the active assets’ fall is a decrease of the

portfolio’s risk. The lower value of cushion means the lower level of

risk in portfolio. If the value of portfolio is less or equal to the floor

then there is no active assets in portfolio and the risk of the portfolio is

zero.
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 3

 

2. Portfolio management performance tools. 

 

W.F. Sharpe (1966) introduced ratio in order to analyse the 
portfolio management performance. That ratio is usually commonly 
known as the Sharpe ratio. The Sharpe ratio measures the excess 
return compared to the total risk. It presents the return per unit of risk. 
It is defined as: 

 

                             
( )

( )P

fP

P
RD

RRE
SR

−
=   (2) 

 

RF – risk-free rate, 

E(Rp) – average return rate on the portfolio, 

D(Rp) – standard deviation of return rate (volatility). 

 

Implementing the CPPI strategy means that the exposure to the 
market risk of the portfolio is varying during the time. It is important 
to test hypothesis that the CPPI strategy allows to anticipate the stock 
market movements. In order to examine if an investor has an ability to 
implement market timing strategy, J.L.Treynor, K.K.Mazuy (1966) 
and R.C.Merton, R.D.Henriksson (1981) developed their models. 

The Treynor-Mazuy model is defined as follows: 

 

  ( ) ( ) εδβα +−+−+=−
2

FtMtpFtMtpFtpt RRRRRR  (3) 

 

� – intercept, 

�p – coefficient beta – denotes level of the systematic risk, 

�p – coefficient delta – measures an ability to implement market 
timing strategy, 

RPt  – the portfolio return for the period studied, 

RMt  – market return for the period studied, 

RFt – risk-free rate, 

� – disturbance term.  

 

The �, �p, �p coefficients are estimated by the least square method. 
The coefficient � measures the share of additional return that is due to 
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the manager’s choices. The coefficient �p denotes exposure to the 
market risk. The coefficient �p measures manager’s ability to 
implement a market timing strategy. If �p is positive and significantly 
different from zero, then it can be concluded that the manager has 
successfully practised the market timing strategy. 

The Hendriksson-Merton model is formulated as follows: 
 

( ) ( ) εββα +−⋅⋅+−⋅+=− FtMtFtMtFtpt RRyRRRR 21  (4) 

 
where 

                         
�
�

�
�

�

<−

>

=

FtMt

FtMt

RRif

RRif

y

1

0

 (5) 

  
� – intercept, 

�1 – coefficient beta 1, 

� – coefficient beta 2, 

RPt  – the portfolio return for the period studied, 

RMt  – the market return for the period studied, 

RFt – risk-free rate, 

� – disturbance term.  

 
The �, �1, �2 coefficients are estimated by the least square method. 

The coefficient � measures the share of additional return that is due to 
the manager’s choices. The coefficient �1 denotes exposure to market 
risk when the market return is higher than the risk-free rate. The 
coefficient �2 measures manager’s ability to implement the market 
timing strategy. If �2 is positive and significantly different from zero, 
then it can be concluded that the manager has successfully practised 
the market timing strategy. 

 
 
 
3. Assumptions and data. 
 
The study examines the implementation of the CPPI strategy to 

the portfolio of the WIG20 index during the period from 20
th

 
December 2004 to 31

st
 August 2010. During that time, it can be 

262 T. WE,GRZYN



5

observed a bull market up to the end of the October 2007 and the fall
in the market up to the end of February 2009.

The WIG20 index is the index from the Polish Stock Exchange in
Warsaw. That index is dedicated for the biggest and the most liquid
companies. The portfolio of the index is verified on the third Friday of
March, June, September, December. It is assumed that one possesses
the portfolio worth 4 mln PLN (about 1 mln €) invested in the WIG20
index and follows the CPPI strategy.

The parameters of the CPPI strategy:

f – floor – 90% of the portfolio value, established on the third
Friday of each December

1
, constant during the year,

m – multiplier – two,

t – tolerance – zero – trades each session,

l – limit – 0.

The most important parameter of the CPPI strategy is the floor.
The floor is set at the 90% of the portfolio value on the third Friday of
December. Next the floor is constant during the whole year, until the
next third Friday of December.

Brokers commissions and fees: 0,40% of the transaction for each
stock.

The risk-free rate is equal to the 90% of the WIBID ON
2
. The

cash achieved from selling stocks is invested with the risk-free rate.

4. Performance analysis.

The figure 1 presents cumulated return rates achieved from such
portfolios:

– the CPPI portfolio - portfolio that follows the CPPI strategy,

– the WIG20 portfolio - portfolio that contains stocks from index
WIG20,

– the cash portfolio - portfolio that contains cash,

– the stock20% portfolio - portfolio that contains 80% cash and
20% stocks from index WIG20.

1
That is the date of the WIG20 index verification.

2
Warsaw Interbank Bid Rate Over Night
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Figure 1. The cumulated return rates for the CPPI portfolio, the WIG20 portfolio,
the cash portfolio and the stock20% portfolio.
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Source: own work.

As it can be noticed, until June 2007 the value of the WIG20
portfolio exceeds value of other portfolios. However, at the end of the
analysed period, it is the WIG20 portfolio which is at the lowest value.
Moreover, the CPPI portfolio and the stock20% portfolio behave very
similar, but the cumulated return rate is always higher for the CPPI
portfolio. During the whole period of the analysis, it can be seen that
the CPPI portfolio and the stock20% portfolio usually outperform the
cash portfolio with an exception of the period between September
2008 and September 2009.

In the table 1, the average daily rates, the standard deviations for
daily rates and the Sharpe ratios for analysed portfolios are presented.
As it can be noticed, the average daily rate is the highest for the
WIG20 portfolio, while other portfolios have almost the same average
daily rate. However, the average daily rate for the CPPI portfolio is
higher than it is for the stock20% portfolio and it is significant under
the null hypothesis. As the table 1 presents, standard deviation for
daily rates is the highest for the WIG20 portfolio. The standard
deviation for daily rates is almost the same for the CPPI portfolio and
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the stock20% portfolio. However, it is lower for the CPPI portfolio 
than for the shares 20% portfolio and it is significant under the null 
hypothesis. 

 
Table 1. Performances of analysed portfolios. 

 
Cumulated 
return rate 

Average 
return rate 

Standard 
deviation 

Sharpe 
ratio 

The CPPI portfolio 26,67% 0,017% 0,00337 0,62% 

The WIG20 portfolio 8,46% 0,021% 0,01749 0,35% 

The stock20% portfolio 25,00% 0,016% 0,00350 0,37% 

The cash portfolio 23,23% 0,015% 0,00010 - 

Source: own work. 

 

 

In order to evaluate the achieved results, the Sharpe ratio was 
calculated. As the table 1 presents, it is the highest for the CPPI 
portfolio and almost equal for the WIG20 portfolio and the stock20% 
portfolio. Moreover, the Sharpe ratio is more than 50% higher for the 
CPPI portfolio than for any other analysed portfolios. It means that the 
CPPI portfolio is more efficient than any other analysed portfolio from 
that point of view. Furthermore, the cumulated rate of return is highest 
for the CPPI portfolio. The stock20 % portfolio gives almost the same 
cumulated rate of return as the cash portfolio. The WIG20 portfolio 
gives about 3 times lower cumulated rate of return than other analysed 
portfolios. 

The coefficients of the Treynor-Mazuy model were estimated by 
the least square method and they are as follows: 

 

( ) ( )
0,00004)()002,0()060,0(

000012,02,008,0
2

FtMtFtMtFtpt RRRRRR −⋅−−⋅+=−
 

 

There are errors under each coefficient. It indicates, that �p is 
insufficiently different from zero. It means that under the CPPI 
strategy the market timing is not practised successfully. Moreover, �p 

is sufficiently different from zero. It indicates that the average amount 
of stocks in the portfolio was about 20% during the whole analysed 
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period. It indicates that the stock20% portfolio is a good benchmark 
for the CPPI portfolio. 

The coefficients of the Hendriksson-Merton model were 
estimated by the least square method and they are as follows: 

 

( ) ( )
0,00005)()004,0()006,0(

0,000032,001,0 FtMtFtMtFtpt RRyRRRR −⋅⋅−−⋅+=−
 

 
There are errors under each coefficient. The coefficient �1 is 

sufficiently different from zero. It indicates that the average amount of 
stocks in the portfolio was about 20% during the whole study. 
However, the coefficient �2 is insufficiently different from zero. It 
means that under the CPPI strategy the market timing is not practised 
successfully. 

Both the Treynor-Mazuy model and the Hendriksson-Merton 
model show that under the CPPI strategy the exposure to the market 
risk is not adapted in advance but after changes in the market prices. It 
means that under the CPPI strategy the market timing is not practised 
successfully. It indicates that there is no evidence that there are series 
in market return rates (plus or minus return rates). 

 
 
 

5. Conclusions. 

 
The CPPI strategy is analysed in this article. The analysis of the 

return rates indicates that implementing the CPPI strategy allows 
statistically significant reduction in the risk at the portfolio in 
comparison to the portfolio that contains constant mix of cash and 
stocks (the stock20% portfolio). The Sharpe ratio indicates that the 
CPPI portfolio is more efficient than other analysed portfolios. 

Both the Treynor-Mazuy model and the Hendriksson-Merton 
model indicate that the average amount of stocks in the portfolio was 
about 20% during the whole analysed period. It means that the 
stock20% portfolio is a good benchmark for the CPPI portfolio. The 
models also indicate that under the CPPI strategy the market timing is 
not practiced successfully. It indicates that there is no evidence that 
there are series in market return rates (plus or minus return rates), 
because the exposure to the market risk is not adapted in advance but 
after changes in the market prices. 
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USE OF ALTERNATIVE LINK FUNCTIONS
IN REGRESSION MODELS FOR ORDINAL RESPONSE

VARIABLES: AN APPLICATION TO THE CUSTOMER SAT-
ISFACTION MEASUREMENT IN A SAMPLE

OF FITNESS CENTERS IN MESSINA
1

AGATA ZIRILLI - ANGELA ALIBRANDI

1. Introduction.

Customer satisfaction measurement can be defined as a method-

ology that relates the level of perception of a service (or product) with

the level of expectations for that service (or product). The identifica-

tion of customer satisfaction by business or government allows the

relationship with users in order to understand their needs and expecta-

tions and, therefore, to redesign the policies and the system of service

delivery. The measure of customer satisfaction is a relatively new

concept for many companies whose interest, until recently, was ad-

dressed only to the data of income and assets. Now the global econ-

omy has changed some sceneries and the key to this change is just

customer satisfaction. In this work the attention has been paid to cus-

tomer satisfaction measurement in fitness centers, by virtue of the

growing interest that people have toward their bodies. It is well

known, in fact, that a regular physical activity of moderate intensity

1
This note, though it is the result of a close collaboration, was specifically elabo-

rated as follows: paragraphs 1, 2 and 5 by A. Zirilli and paragraphs 3 and 4 by A.

Alibrandi
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supports a healthy lifestyle, with remarkable health benefits of the 

whole person. In such context the statistical analysis aims to quantify 

the incidence of these factors, responsible of variations of the global 

satisfaction level and to verify, through the use of opportune models, 

the possible dependence from other variables.  

Our goal is twofold: firstly, we propose to compare models with 

different link function to assess which of these lead to a better fit to 

data, on the other hand, we are interested into check the possible de-

pendence of the customer satisfaction degree from some factors con-

sidered as potential predictors.  

 

 

2. Modeling ordinal response. 

 

The models for ordinal response variables were designed to ana-

lyze individual choices that led to high satisfaction levels; in fact, in 

social reality, the individual often must make the choice between al-

ternatives and, in this approach, the individual sphere becomes more 

important than the temporal dimension in which the choices are em-

ployed.  

In this class of models, the used categories are ordered and aimed 

to measure customer satisfaction (Lawson and Montgomery, 2006) or 

evaluation of services  (Bogani, 2001; Giarelli , 2002). 

The response variable is an ordinal variable with 4 categories; for 

this reason we estimated a regression model for ordinal data. The re-

gression models for ordinal response variables are frequently used in 

the social sciences, in order to estimate the influence of one or more 

explanatory variables on the response probability (Agresti, 2002) 

Let be Y an ordinal variable with J ordered categories 

(y1<y2<…<yJ) with P(Y=j)=�j and let be x a vector of K explicative 

variables. 

Some regression models for ordinal variable don’t require to as-

sign scores to the categories; they use the ordering of Y variable  

modes, modeling the cumulative probabilities: 

 

P(Y�j)=�j=�1+…+�j 

by a cumulative link model  

 

                         link (�j)=�0j+ x
T
 �=�j        j=1,2,…, J-1 (1) 
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where link(·) is the known link function (Agresti, 1990). Often the re-

searcher does not pay attention to the choice of link function to be 

used to specify the model; this choice becomes important to optimize 

the estimated model, instead. In this paper we estimated models with 

different link functions, to assess which among these better fit the 

data. The used link functions are the following: 

 

 
}exp{1

}exp{

η

η

+
  (2) 

 

 }{ηΦ  (3) 

 

 1-exp{-exp{�}} (4) 

 ( )dyyfCauchy�
η

 (5) 

where f Cauchy(·) is the Cauchy density. 

We assumed that the observations {nkj} are organized in a k×J 

matrix, i.e. K conditioned multinomial distributions with J categories; 

the log-likelihood can be expressed as: 

 

 )log()( jk

J

j

K

k

jkn� π��=�   (6) 

 

where �=(�0j, �T
)
T
 is the parameters vector in the model, and  

 

 � j =� j – � j-1          (7) 

 

where  �j=link
-1

(�j) comes from the cumulative link model, with ap-

propriate link function (Muggeo and Aiello, 2008).  As is well known, 

the parameters are estimated by maximizing the likelihood, i.e. 
 

 )(maxarg
^

θθ �=           (8) 
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3. The data.

In this paper the data are derived from responses to a question-

naire. The sample consists of 138 subjects attending a gym in Messina

city. The questionnaire was designed to measure the satisfaction level

of these users towards the services provided by various gyms.

Each subject gave its agreement with reference to each item, on

an ordinal scale consisting of four levels.

The survey was performed in the period June - July. Data were

collected on the field by the administration of the questionnaire, dis-

tributed according to the technique of cluster sampling. Although this

technique involves a higher sampling error than other techniques of

randomization, its adoption is justified by the considerable savings in

terms of time/ cost.

The questionnaire was structured into sections:

– an introductory registry section to obtain basic information on

gender and age of the interviewee;

– a section where the respondent is asked to express a personal

opinion about the indicators of interest (instructors professional-

ism, spaciousness and cleanliness of the fitness rooms, usability

of the toilets, service cost, availability of equipment) according

to an ordinal growing scale and, finally, an indication of the

time taken to go to the gym;

– a section relative to the perceived inconvenience (expressed in

presence or absence terms) in relation to noise, disorganization,

waiting to use equipment, supportability of temperature within

the fitness rooms and crowding of the halls;

– finally an overall judgment was required relatively to the ser-

vices offered by the frequented gym, expressed, as already men-

tioned, in four satisfaction levels.

In Figure 1 we show the satisfaction mean levels of the examined

subjects with reference to the six indicators.
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Figure 1 – Satisfaction mean level for indicators 

 

 

 
Table 1: Frequencies of bivariate distributions of categorical variables for re-
sponse levels 

  Response Levels  

Factors  1 2 3 4 Total 

 
 

Sex 

M 10 (7,2) 
18 

(13,0) 
38 

(27,5) 
24 (17,4) 90 (65,2) 

F 1 (0,07) 5 (3,6) 
21 

(15,2) 
21 (15,2) 48 (34,8) 

       

 
Age 

�25 6 (4,3) 
11 

(8,0) 
26 

(18,8) 
16 (11,6) 59 (42,8) 

25-
35 

4 (2,9) 5 (3,6) 
17 

(12,3) 
14 (10,1) 40 (29,0) 

>35 1 (0,7) 7 (5,1) 
16 

(11,6) 
15 (10,9) 39 (28,2) 

       

 
Weekly 
training 

�3 7 (5,1) 
16 

(11,6) 
29 

(21,0) 
29 (21,0) 81 (58,7) 

>3 4 (2,9) 7 (5,1) 
30 

(21,7) 
16 (11,6) 57 (41,3) 

       

Course at-
tendance 

Yes 5 (3,6) 9 (6,5) 
29 

(21,0) 
30 (21,7) 73 (52,9) 

No 6 (4,3) 
14 

(10,1) 
30 

(21,7) 
15 (10,9) 65 (47,1) 
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As we can see, the highest mean levels of satisfaction are found 
for “instructors professionalism” and “cleanliness”;  the lowest satis-
faction, however, is referred to the “spaciousness”. 

Table 1 shows the observed frequencies of the bivariate distribu-
tions of answer variable for each categorical variables; the “age” has 
been categorized in classes.  

In general, we note that the satisfaction assessments  (3 and 4 re-
sponse levels) are more numerous than the dissatisfaction assessments  
(1 and 2 response levels). In particular, the most satisfied subjects are 
male and aged less than 25 years. 

 

 

 

 

4. Comparison among models with different link functions 

 

We estimated models with different link functions to assess 
which of these is the best. Thus the description of the observed vari-
ability in ordinal responses also allowed to define the user's profile. 
Table 2 shows the parameter estimations (coefficient, standard error 
and relative p-value) obtained from models with different link func-
tions. Moreover for each model we reported the Log-Likelihood value 
(�) and the Log-likelihood ratio test (LR) with relative  p-value. 

We investigated the existence of possible interactions between 
the regressors, but in any case there were significant estimates of these 
effects, at the prefixed significance level (�=0.05). 

By examining the results we can see that the probit  is the link 
function that ensures a higher likelihood value (� = -89.695), followed 
by logit (�= - 90.267). This consideration allows the identification of 
this model as the best. 

By the estimated models we can identify some statistically sig-
nificant explanatory variables at the prefixed significance level. In 
particular we can see that customer satisfaction is significantly de-
pendent on the spaciousness of the rooms, the service cost, the equip-
ment availability and the toilets quality; also the low waiting times to 
use the equipment and the temperature tolerability appear to be sig-
nificant factors on overall satisfaction; other factors result irrelevant. 
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Table 2: Parameter estimations obtained from models with different link functions 

 Logit Probit 

Factors Est. S.E p Est. S.E. p 

Age 0.027 0.02 0.168 0.218 0.15 0.150 

[Sex=M]
*
 -0.540 0.45 0.233 -0.280 0.25 0.259 

Spaciousness 1.490 0.46 0.001 0.808 0.25 0.001 

Toilets usability 0.972 0.36 0.007 0.597 0.20 0.003 

Cleanliness 0.402 0.46 0.380 0.166 0.26 0.517 

Equip. availab. 0.962 0.41 0.018 0.550 0.23 0.015 

Service cost 1.907 0.39 0.000 1.071 0.21 0.000 

Time to reach 
gym 

0.100 0.25 0.685 0.048 0.14 0.731 

[Noice =No] 1.407 1.32 0.287 0.713 0.76 0.349 

[Disorganiz.=No] 1.800 1.40 0.199 0.950 0.79 0.228 

[Waiting 
time=No] 

1.965 0.79 0.012 1.220 0.47 0.010 

[Temp. 
Supp.=No] 

1.655 0.63 0.008 0.993 0.36 0.006 

[Crowding=No] 0.353 0.61 0.561 0.211 0.34 0.534 

       

LR test 158.652  0.000 159.797  0.000 

� -90.267   -89.695   

 C-log-log Cauchy 

Age 0.017 0.02 0.201 0.027 0.20 0.173 

[Sex=M] -0.573 0.29 0.051 -0.540 0.46 0.235 

Spaciousness 1.205 0.32 0.000 1.490 0.47 0.001 

Toilets usability 0.741 0.23 0.001 0.971 0.36 0.008 

Cleanliness 0.162 0.30 0.586 0.402 0.46 0.380 

Equip. availab. 0.653 0.26 0.013 0.962 0.41 0.018 

Service cost 1.480 0.27 0.000 1.907 0.39 0.000 

Time to reach 
gym 

0.070 0.17 0.672 0.100 0.25 0.691 

[Noice =No] 1.153 0.86 0.180 1.407 1.37 0.303 

[Disorganiz.=No] 1.460 0.93 0.114 1.800 1.40 0.200 

[Waiting 
time=No] 

1.507 0.53 0.004 1.965 0.81 0.016 

[Temp. 
Supp.=No] 

1.320 0.40 0.001 1.655 0.64 0.010 

[Crowding=No] 0.243 0.38 0.526 0.353 0.61 0.563 

       

LR test 156.109  0.000 158.625  0.000 

� -91.539   -90.287   

In brackets [ ] we reported the categorical variables; as it is known, for this kind of 
variable the model estimates only the coefficients associated with n-1 modes. 
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Finally, for only the “best” model, i.e. probit model, for the each
variable we reported the exponential parameters estimation (OR) and
related confidence interval (C.I.) at 95% significance level (Table 3).

Table 3 - Exponential parameters estimation and C.I.

Factors OR

C.I. (95%)

Inf. Sup.

Age 1.244 0.924 1.675

[Sex=M] 0.756 0.465 1.229

Spaciousness * 2.244 1.367 3.685

Toilets usability * 1.817 1.220 2.707

Cleanliness 1.180 0.715 1.947

Equipment availability * 1.733 1.113 2.699

Service cost * 2.918 1.926 4.420

Time to reach the gym 1.049 0.797 1.381

[Noice =No] 2.041 0.458 9.087

[Disorganization=No] 2.585 0.552 12.105

[Waiting time=No] * 3.387 1.344 8.534

[Temper. Supportability=No] * 2.698 1.326 5.489

[Crowding=No] 1.234 0.635 2.398

In brackets [ ] we reported the categorical variables; with * we indicated the
significant parameters

In particular, if we focus our attention on the significant parame-
ters (pointed by an asterisk), we can identify variables that determine a
higher risk of dissatisfaction. In particular, based on descending val-
ues of OR, we can draw up the «importance ordering» of these vari-
ables: “waiting time” is the first variable that characterizes the satis-
faction/dissatisfaction, followed by “service cost” and “temperature
supportability”. The significant variable that less influences the satis-
faction/dissatisfaction level is, however, the equipment availability.
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5. Final remarks.

Gyms examined in the statistical survey involving mostly indi-
viduals, aged between 20 and 29 years, mostly students; the main
causes which give rise to interest in fitness practice is due to maintain
physical fitness and stress disposal, the need to treat its appearance
and the health care. Respondents demonstrate a frequent participation
in the service, but this participation may, however, be discouraged by
the existence of discomfort, particularly from overcrowding and the
temperature in the fitness rooms. Furthermore, respondents expressed
their preference related to the kind of payment and, consequently, to
the service costs. In general, focusing our attention on the examined
variables, we can affirm that the statistical analysis showed a signifi-
cant link between customer satisfaction and toilets quality, spacious-
ness of rooms, equipment availability and service costs; it was not
possible, however, appreciate a significant change in satisfaction ac-
cording to assessments made on other indicators. The more perceived
inconveniences are the waiting time and the temperature inside the fit-
ness rooms; the absence of such discomforts involves the achievement
of high standards of satisfaction

As is known, the most used test to verify the estimated model is
the Likelihood Ratio test: it is distributed as a chi-square random vari-
able: we accept the estimated model if LR is very high and its P-value
is very small, considering the relative degrees of freedom.

Regarding the comparison between models for ordinal response
variables, with different link function, all estimated models are sig-
nificant; but the probit link function (followed by logit) provides the
best results with regard to Likelihood, although the differences are
minimal compared to other models.

In both models, the independent variables are presumed to affect
the satisfaction/dissatisfaction level and represent a priori beliefs
about the causal or associative elements important in the expressed
ordinal opinion. In the case of ordinal scale variables, an ordered logit

or probit model have the advantage of the additional information pro-
vided by the ordinal over the nominal scale. The choice between a
logit or probit depends only on practical reasons because there aren’t
theoretical reasons for choice (Amemiya, 1981) and in different appli-
cations substantive differences between the two models are not high-
lighted.
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A STATISTICAL APPROACH TO COMPARE  
ANG-2 AND �-FP SERUM LEVELS INTO 

DETECTING HEPATOCELLULAR CARCINOMA
1
 

 
 

AGATA ZIRILLI - ANGELA ALIBRANDI 

 
 
 

 
1. Introduction. 
 
Hepatocellular carcinoma (HCC) is one of the leading causes of 

death for patients with liver cirrhosis. Only an early diagnosis allows 
for a truly effective and decisive treatment of this disease, otherwise it 
would have a very rapid evolution. Currently, a monitoring program 
based on a determination of serum �-fetoprotein (�-FP) is produced 
(Chen et al., 2005; Nomura et al., 2006; Kailapuri et al, 2008; Chan et 
al., 2009). However, this protocol has limitations because the �-FP is 
diagnostic only for extremely high values. There is, therefore, the 
need to search for new markers (Glypican-3, IGF-II, IGF beta1, TGF 
beta1, Chromogranin A, etc) with greater sensitivity and specificity, 
but the results were almost always not very encouraging. 

On the basis of histological data already acquired, which 
highlight the increased vascularity of HCC compared to cirrhotic liver 
tissue, it was demonstrated a high tissue expression of a vascular 
growth factor, called Angiopoietin-2 (Ang-2). In literature there are 
few references about a possible use of Ang-2 as a serological marker 
for detecting HCC (Tanaka et al., 1999). 

In this paper we focused our statistical attention on ANG-2: in 

particular we want to compare ANG-2 and α-FP serum levels among 

                                                 
1
 This note, though it is the result of a close collaboration, was specifically 

elaborated as follows: paragraphs 1, 5, 6 and 7 by A. Zirilli and paragraphs 2, 3 and 

4 by A. Alibrandi 
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three groups of patients (HCC patients, cirrhotic patients and healthy
controls); moreover, through a sensitivity and specificity analysis, we
aim to assess the ANG-2 diagnostic utility in hepatocellular carcinoma

and to underline its utility as complementary tumour marker to α-FP.

2. The data.

The data were collected by an hepatology specialized team of
Universitary Policlinic in Messina. In this context, we have to thank
dott. Aldo Spadaro for his scientific support with regard to the medical
competences.

Our dataset is composed by three groups of subjects. In
particular, 59 patients (45 male and 14 female) were affected by
hepatocellular carcinoma, 57 (37 male and 20 female) by cirrhosis
alone and 40 healthy controls (24 male and 16 female); all subjects
were aged between 21 and 84 years.

For each subject we collected information about gender, age,
bilirubin, albumin, ascites (presence or absence), encephalopathy

(presence or absence), ANG-2 and α-FP serum levels and, for only
HCC patients, the nodules number and their maximum diameter. In
table 1 we reported the descriptive statistics for the numerical
variables, for each group of subjects.

Figure 1 and 2 show the boxplots for log(α-FP) (the “log”

transformation was necessary to better visualize the α-FP distribution)
and for ANG-2, respectively.

Figure 1: Boxplot for log (α-FP) in the
three groups
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Figure 2: Boxplot for ANG-2 in the three groups
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Table 1: Descriptive statistics for the numerical variables

HCC

VARIABLES Mean S.D. Min Max

Bilirubin 2.52 2.49 0.40 14.30

Albumin 3.30 0.62 2.10 5.10

α-FP 1416.27 4040.11 1.40 27039.00

ANG-2 9.75 6.62 1.79 26.57

Nod_number 1.78 1.16 1.00 6.00

Nod_diam 3.58 1.85 1.00 10.00

CHIRROTICS

Bilirubin 2.78 5.89 0.44 44.00

Albumin 3.56 0.64 2.00 4.80

α-FP 15.69 52.95 1.10 325.32

ANG-2 6.23 5.09 1.02 2.71

CONTROLS

Bilirubin 1.22 3.18 0.41 10.00

Albumin 2.65 0.60 2.00 4.80

α-FP 6.05 1.27 3.90 8.10

ANG-2 2.69 1.11 1.08 5.13
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3. The NPC Methodology. 

 

The low sampling number and the lack of normality in the 
distribution of the examined variables didn't guarantee valid 
asymptotic results. For this reason we have used a nonparametric 
approach. In order to assess the existence of possible significant 
differences between the three groups of subjects (HCC, Cirrhotics and 
Controls) in relationship to the different measured parameters, a non 
parametric inference based on permutation tests  has been applied; in 
particular we referred to the Non Parametric Combination Test (NPC 
Test) (Pesarin, 2001).  

Permutation tests represent an effective solution for problems 
concerning the verifying of multidimensional hypotheses, because 
they are difficult to face in parametric context. In comparison to the 
classical approach, NPC test is characterized by several advantages: it 
doesn't request normality and homoschedasticity assumption, it draws 
any type of variable, it assumes a good behaviour also in presence of 
lacking data, it is powerful in presence of low sampling size, it 
resolves multivariate problems without the necessity to specify the 
structure of dependence among variables, it allows stratified analyses 
and resolves problems in which observations number is smaller than 
variables number. 

We supposed to notice K variables on N observations (dataset 
N×K) and that an appropriate K-dimensional distribution P exists. 

The null hypothesis postulates the equality in distribution of k-
dimensional distribution among all C groups  
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Let’s assume that, without loss of generality, the partial tests 
assume real values and they are marginally correct, consistent and 
significant for great values; the NPC test procedure (based on 
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Conditional Monte Carlo resampling) develops into the following 
phases: 

1. the value of the k-variated statistic is calculated on 
observations;   

2. for every resampling conditioned  to the observed data, we 
calculate the vector of the permuted statistics; 

3. for each partial test and resampling, the transformation in rank 
is performed; 

4. p-values related to the partial tests are calculated;   

5. the combined resampling value  is calculated using the 
combination Fisher function; 

6. the observed  value of  the second order combined test and its 
p-value are calculated. 

7. if p-value  is minor than �, the H0 hypothesis is rejected at 
fixed significance level. 

In order to check the multiplicity effects, the Closed Testing 
procedure (Finos et al., 2003) has been applied for correcting 
the p-values of the two-by-two  comparisons. 

 

 

 

4. The NPC test results. 

 

By means of the above-mentioned methodology, we have verified 
the following hypotheses system. 

�
�
�

�
�
�

�
�
�

�
�
�

== 21210 ...: FPFPBilirubinBilirubinH
dd

αα��  

 

�
�
�

�
�
�

�
�
�

�
�
�

≠≠ 21211 ...: FPFPBilirubinBilirubinH
dd

αα��  

where 1 and 2 are the two compared  groups.  Partial and combined p-
value for comparison between groups was reported in Table 2. 

NPC test application and Closed Testing correction (Finos et al., 
2003) have shown that, in patients affected by HCC, both ANG-2 and 

α-FP levels were significantly higher than in cirrhotic patients and in 
healthy controls, as we can see examining the results in Table 2. Any 
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significant differences exist between cirrhotics and controls for α-FP 
marker; ANG-2 serum levels were significantly higher in cirrhotic 
patients when compared to healthy controls. 

 

 
Table 2: NPC test results for comparison between groups 

VARIABLES 
HCC vs 

CIRRHOTICS 
HCC vs 

CONTROLS 
CIRRHOTICS vs 

CONTROLS 

Bilirubin 0,866 0,001 0,003 

Albumin 0,028 0,004 0,005 

Ascites 0,011 - - 

Encephalopathy 0,398 - - 

α-FP 0,000 0,000 0,306 

ANG-2 0,002 0,000 0,001 

 � � � 

Combined 0,015   

 
 

With reference to the compliances “ascites” and “encepha-
lopathy”, we can perform only the comparison  between  HCC and 
Cirrhotics patients, because such compliances weren’t, obviously, 
observable  in healthy control subjects.  

 
 

 

5. Diagnostic  tests: assumptions 
  
Diagnostic tests (Zou et al., 2007) represent widely used indexes  

to evaluate the performance of a specific marker; they have the 
advantage to be independent on the prevalence of the examine 
pathology in the population. Let’s consider the following table: 

 

 
 
 
 
 
 
 

 Pathology  

Test Presence Absence Total 

Positive TP FP N(T+) 

Negative FN TN N(T-) 

Total N(D+) N(D-) N 
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with:

• TP (True Positive) = patients with pathology and positive test;

• FP (False Positive) = patients without pathology and with
positive test;

• TN (True Negative): patients without pathology and with
negative test;

• FN (False Negative): patients with pathology and with negative
test;

• N(D+): total number of patients with pathology;

• N(D-): total number of patients without pathology;

• N(T+): total number of patients with positive test;

• N(T-): total number of patients with negative test;

• N: total number of patients.

• The sensibility is the proportion of subjects with pathology that
result positive at a particular test. Sensibility is estimable as:

Sensibility = TP/N(D+)

• The specificity is the proportion of subjects without pathology
that result negative at the same test. Specificity is estimable as:

Specificity= TN/N(D-)

• The Predictive value of a positive test (PVP) is the probability
of the pathology presence in case of positive test. It is
estimable as:

TP/N(T+)

• The Predictive value of a negative test (PVN) is the
probability of the pathology absence in case of negative test. It
is estimable as:

TN/N(T-)

The area under curve (AUC) is an essential parameter for
evaluating the performance of a test and represents a measure of
accuracy. Since AUC is an estimate of the sample, it is almost always
necessary to test the significance of the discriminating ability of the
test, or if the area under the curve significantly exceeds its expected
value of 0.5. This procedure allows to verify if the proportion of true
positives is higher than that of false positives.
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6. The sensitivity and specificity results.

The optimal cut off was individualized by means of ROC analysis
(Bottarelli and Parodi, 2003); for the two examined markers we
obtained the values:

• 200 ng/ml for α-FP with area under ROC curve of 64,7%;

• 6,3 ng/ml for ANG-2, with area under ROC curve of 62.9%

Sensitivity, specificity, positive and negative predictive value and

diagnostic accuracy were calculated for α-FP and ANG-2, singly and
jointly (Altman and Bland, 1994), into detecting HCC presence.
Table 3 shows the results of the above-mentioned diagnostic tests.

Table 3: Diagnostic test for α−FP and ANG-2

(singly and jointly considered) into detecting HCC

Marker Sensibility Specificity VP+ VP- Accuracy

α-FP 33.9% 96.5% 90.9% 58.5% 64.7%

ANG-2 64.4% 61.4% 63.3% 62.5% 62.9%

α-FP and ANG-2 74.6% 61.4% 66.7% 70.0% 68.1

Comparing the two markers, we can notice that the ANG-2 shows

a higher sensibility value than α-FP, but a lower specificity; the
difference between the two markers is lower with reference to the

accuracy, even if the α-FP guarantees a slightly higher value.
Evaluating the sensibility and specificity of AFP and ANG-2 jointly
used, we obtained a more elevated sensibility (in comparison to every
marker singly used) even if the specificity is lower (exactly equal to
the ANG-2 specificity). This underlines the informative and
diagnostic utility of ANG-2, to be used jointly to the commonly used

α-FP marker.

7. Final Remarks

Serum α-FP is among the most intensively studied tumor markers
for HCC. The test, when used with the conventional cut-off point of
400 ng/ml, has a sensitivity of about 48-63% and a specificity of
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100% in detecting the presence of HCC in patients with compensated 
cirrhosis. In recent years various other serological markers have been 
developed for the diagnosis of HCC. However, most of these markers 
have been shown to be unsatisfactory in diagnosing small HCC due to 
low sensitivity. For this reason, we focalized our interest toward 

ANG-2 as HCC marker. Such as α-FP, also ANG-2 levels in HCC 
were significantly higher than cirrhotic patients and than controls. The 
optimal cut-off values into diagnosing HCC, determined with ROC 

curve, was 200 ng/ml for α-FP and 6,30 ng/ml for ANG-2. The 

diagnostic utility of the joined action of α-FP and ANG-2 was 
assessed by the sensibility value, that is more elevated in comparison 
to every marker singly used.  

So, this paper underlines the informative and diagnostic utility of 
ANG-2; it, if jointly used to the �-FP marker, can be an effective 
strategy into detecting hepatocellular carcinoma. 
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